Vol. 28 No. 2

Operations Research and Cybernetics

DOI 10.3969/J. ISSN. 1672-6693.2011.02.001

A Characterization for r-Preinvex Function

ZHAO Ke-quan , LONG Pu-jun , WAN Xuan

(College of Mathematics , Chongqing Normal University , Chongqing 400047 , China)

Key words: invex set; r-convex function; preinvex function; r-preinvex function

中图分类号:0221.2

文献标识码:A

文章编号:1672-6693(2011)02-0001-04

1 Introduction

It is well known that convexity has been playing an central role in mathematical programming , engineering and optimization theory. Avriel^[1] introduced the concept of r-convex function which is a generalization of convex function and discussed some characterizations of r-convex function. Ben-Israel and Mond^[2] considered function (not necessarily differentiable) for which there exists a vector function $\eta: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n$ such that , for any x, $y \in \mathbf{R}^n$, $\lambda \in [0, 1]$

$$f(y + \lambda \eta(x, y)) \leq \lambda f(x) + (1 - \lambda)f(y) \tag{1}$$

Weir , et al^[34] named this kind of function which was satisfied (1) preinvex function with respect to η . As the generalizations of r-convex function and preinvex function , Antezak^[5] gave the definition of r-preinvex function and obtained some optimality results under r-preinvexity assumption for a class of constrained optimization problems.

Motivated by works of Avriel^[1] and Antczak^[5], in this paper, under some suitable conditions, we first give an equivalent condition for r-preinvex function as follows: f is r-preinvex function with respect to η if and only if F(x, y, y, x) is r-convex function with respect to χ in [0, 1]. Based on the result, we establish a criteria for r-preinvex function as follows: f is r-preinvex function with respect to η if and only if $\forall x, y \in X$, $f[y, y]^T \eta(x, y)^T \gamma(x, y)^T \eta(x, y)$ and $f[x, y, y, y]^T \eta(x, y, y)^T \eta(x, y, y)$. By the criteria, we can verify the f[x, y, y, y, y] functions.

It is very important and meaningful to study the characterizations of r-preinvexity which was introduced bu Antezak in [5] as a generalization of the preinvexity. On the one hand, this will be helpful to understand the nature of r-preinvexity. On the other hand, it will also be lay a foundation to study the applications in optimization theory for r-preinvexity. In this paper, we give some necessary and sufficient conditions of r-preinvexity. This will provide some criteria to verify the r-preinvexity, our main results generalize and improvesome corresponding results in [1].

2 Preliminaries

Definition 1^[1] Let $f: X \to \mathbb{R}$, where X is a nonempty convex set in \mathbb{R}^n . f is said to be r-convex on X if $\forall x$,

$$y \in X$$
, $\forall \lambda \in [0, 1]$, $f(y + \lambda(x - y)) \le \begin{cases} \log(\lambda e^{r(x)} + (1 - \lambda)e^{r(y)})^{\frac{1}{r}}, r \ne 0 \\ \lambda f(x) + (1 - \lambda)f(y), r = 0 \end{cases}$.

Definition $2^{[34]}$ A nonempty set $X \subseteq \mathbb{R}^n$ is said to be invex if there exists a vector-valued function $\eta: X \times X \to \mathbb{R}^n$ such that $\forall x, y \in X, \forall \lambda \in [0, 1], y + \lambda \eta(x, y) \in X$.

Definition $3^{[34]}$ Let $X \subseteq \mathbb{R}^n$ be invex with respect to vector-valued function $\eta: X \times X \to \mathbb{R}^n$ and $f: X \to \mathbb{R}$. f is said to be preinvex with respect to η if $\forall x, y \in X$, $\forall \lambda \in [0,1]$, $f(y + \lambda \eta(x,y)) \leq \lambda f(x) + (1-\lambda)f(y)$.

Definition $4^{[5]}$ Let $X \subseteq \mathbb{R}^n$ be invex with respect to $\eta : X \times X \to \mathbb{R}^n$. $f : X \to \mathbb{R}$ is said to be r-preinvex if $\forall x$,

$$y \in X , \forall \lambda \in [0, 1], f(y + \lambda \eta(x, y)) \le \begin{cases} \log(\lambda e^{\eta(x)} + (1 - \lambda)e^{\eta(y)})^{\frac{1}{r}}, r \ne 0 \\ \lambda f(x) + (1 - \lambda)f(y), r = 0 \end{cases}$$

Condition C¹⁶¹ Let $\eta: X \times X \to \mathbb{R}^n$ and satisfy condition C if $\forall x, y \in X$, $\forall \lambda \in [0, 1] C_1$ if $y \notin \lambda \eta(x \notin y) = -\lambda \eta(x, y)$, $C_2 : \eta(x \notin y + \lambda \eta(x, y)) = (1 - \lambda)\eta(x, y)$.

Condition D^[7] Let $X \subseteq \mathbb{R}^n$ be invex with respect to $\eta : X \times X \to \mathbb{R}^n$ and $f : X \to \mathbb{R}$. f is said to be satisfied condition D if $\forall x, y \in X$, $f(y + \eta(x, y)) \leq f(x)$.

Lemma 1^[1] Let F be a twice continuously differentiable real function on an open interval (a, b). Denote by F', F'' the first and second derivatives of F, respectively. Then F is r-convex if and only if for every $x \in (a,b)$, $[F'(x)]^2 + F''(x) \ge 0$.

3 Main Results

Avriel [1,1] established the following result for r-convex function as follows.

Suppose that $X \subseteq \mathbb{R}^n$ be a nonmepty convex set and $f: X \to \mathbb{R}$. $\forall x, y \in X$, $\forall \lambda \in [0, 1]$, let $F(x, y, \lambda) = f(y + \lambda(x - y))$. Then f is r-convex function if and only if $F(x, y, \lambda)$ is r-convex function with respect to λ in [0, 1].

In the following , we give a generalization of above theorem and establish the equivalent condition of r-preinvex function.

Theorem 1 Let $X \subseteq \mathbb{R}^n$ be invex set with respect to $\eta: X \times X \to \mathbb{R}^n$, η satisfy condition C and f defined on X satisfy condition D. $\forall x, y \in X$, $\forall \lambda \in [0, 1]$, let $F(x, y, \lambda) = f(y + \lambda \eta(x, y))$. Then f is r-preinvex function with respect to η if and only if $F(x, y, \lambda)$ is r-convex function with respect to λ in [0, 1].

Proof We consider only the case when r > 0; in other cases , the proof is analogous. Assume that f is r-preinvex function with respect to η , then $\forall x$, $y \in X$, $\forall \lambda \in [0, 1]$

$$\int (y + \lambda \eta(x y)) \leq \log(\lambda e^{\eta(x)} + (1 - \lambda)e^{\eta(y)})^{\frac{1}{r}}$$
(2)

Next , we prove that $F(x, y, \lambda)$ is r-convex function with respect to λ in [0, 1]. $\forall \alpha_1, \alpha_2 \in [0, 1]$, $\forall \lambda \in [0, 1]$.

If $\alpha_1 = \alpha_2$, the result is obvious.

If $\alpha_1 > \alpha_2$, then $\alpha_1 - \alpha_2 > 0$ and $\alpha_2 \neq 1$. Thus we have $0 < \frac{\alpha_1 - \alpha_2}{1 - \alpha_2} \leq 1$.

From the condition C , it follows that

$$\eta(y + \alpha_1 \eta(x y) y + \alpha_2 \eta(x y)) = \eta(y + \alpha_2 \eta(x y) + (\alpha_1 - \alpha_2) \eta(x y) y + \alpha_2 \eta(x y)) = \eta(y + \alpha_2 \eta(x y) + (\alpha_1 - \alpha_2) \eta(x y) + (\alpha_1 - \alpha_2) \eta(x y) + (\alpha_1 - \alpha_2) \eta(x y) = (\alpha_1 - \alpha_2) \eta(x y) = (\alpha_1 - \alpha_2) \eta(x y) = (\alpha_1 - \alpha_2) \eta(x y)$$

(3)

Then, by (2) and (3), we obtain

$$F(x, y, \alpha_2 + \lambda(\alpha_1 - \alpha_2)) = f(y + (\alpha_2 + \lambda(\alpha_1 - \alpha_2)) m(x, y)) =$$

$$\int_{r} (y + \alpha_{2} \eta(x y) + \lambda \eta(y + \alpha_{1} \eta(x y)) y + \alpha_{2} \eta(x y))) \leq \log(\lambda e^{\eta(y + \alpha_{1} \eta(x y))} + (1 - \lambda) e^{\eta(y + \alpha_{2} \eta(x y))})^{\frac{1}{r}} = \log(\lambda e^{rR(x y \alpha_{1})} + (1 - \lambda) e^{rR(x y \alpha_{2})})^{\frac{1}{r}}$$

If $\alpha_1 < \alpha_2$, then $\alpha_2 - \alpha_1 > 0$ and $\alpha_1 \neq 1$. Thus we have $0 < \frac{\alpha_2 - \alpha_1}{1 - \alpha_2} \leq 1$.

From the condition C , it follows that

$$\eta(y + \alpha_1 \eta(x y) y + \alpha_2 \eta(x y)) = \eta(y + \alpha_1 \eta(x y) y + \alpha_1 \eta(x y) + (\alpha_2 - \alpha_1) \eta(x , y)) =
\eta(y + \alpha_1 \eta(x y) y + \alpha_1 \eta(x y) + \frac{\alpha_2 - \alpha_1}{1 - \alpha_1} \eta(x y + \alpha_1 \eta(x y))) =
- \frac{\alpha_2 - \alpha_1}{1 - \alpha_1} \eta(x y + \alpha_1 \eta(x y)) = (\alpha_1 - \alpha_2) \eta(x y)$$
(4)

$$-\frac{\alpha_2 - \alpha_1}{1 - \alpha_1} \eta(x y + \alpha_1 \eta(x y)) = (\alpha_1 - \alpha_2) \eta(x y)$$

$$(4)$$

Then, from (2) and (4), we have

$$F(x \ y \ \alpha_{2} + \lambda(\alpha_{1} - \alpha_{2})) = f(y + (\alpha_{2} + \lambda(\alpha_{1} - \alpha_{2})) \eta(x \ y)) = f(y + \alpha_{2} \eta(x \ y) + \lambda \eta(y + \alpha_{1} \eta(x \ y)) y + \alpha_{2} \eta(x \ y))) \leq \log(\lambda e^{rf(y + \alpha_{1} \eta(x \ y))} + (1 - \lambda) e^{rf(y + \alpha_{2} \eta(x \ y))})^{\frac{1}{r}} = \log(\lambda e^{rf(x \ y \ \alpha_{1})} + (1 - \lambda) e^{rf(x \ y \ \alpha_{2})})^{\frac{1}{r}}$$

By the definition of r-convex function, $F(x, y, \lambda)$ is r-convex function with respect to λ in [0, 1].

Conversely, $\forall x \ y \in X$, $\forall \lambda \in [0, 1]$, suppose that the $F(x \ y \ \lambda)$ is r-convex function with respect to λ in [0 , 1]. Then , by the condition D , we can obtain

$$f(y + \lambda \eta(x, y)) = F(x, y, \lambda) = F(x, y, \lambda) + (1 - \lambda) \cdot 0) \leq \log(\lambda e^{rR(x, y, 1)} + (1 - \lambda)e^{rR(x, y, 0)})^{\frac{1}{r}} = \log(\lambda e^{rR(x, y, 0)}) + (1 - \lambda)e^{rR(x, y, 0)})^{\frac{1}{r}} \leq \log(\lambda e^{rR(x, y, 0)})^{\frac{1}{r}} \leq \log(\lambda e^{rR(x, y, 0)})^{\frac{1}{r}}$$
This completes the proof.

Obviously, let $\eta(x, y) = x - y$, Theorem 1 is concided with the result which was established by Remark 1 Avriel in [1].

In the following, we give a characterization of r-preinvex function and establish an necessary and sufficient condition of twice continuously differentiable r-preinvex function by making use of Theorem 1.

Theorem 2 Let $X \subseteq \mathbb{R}^n$ be open invex set with respect to $\eta: X \times X \to \mathbb{R}^n$ and η satisfy condition C. f defined on X is twice continuously differentiable and satisfies condition D. Then f is r-preinvex function with respect to η if and only if $\forall x, y \in X$, $f[V(y)^T \eta(x, y)]^2 + \eta(x, y)^T V^2 f(y) \eta(x, y) \ge 0$.

Proof Suppose that f is a twice continuously differentiable r-preinvex function with respect to η . By Theorem 1 , $\forall x \ y \in X$, $F(x \ y \ \lambda) = f(y + \lambda \eta(x \ y))$ is a twice continuously differentiable r-convex function with respect to λ in [0,1].

From Lemma 1, $\forall \lambda \in (0, 1)$, we can obtain that

$$f[F_{\lambda}'(x,y,\lambda)]^2 + F_{\lambda}''(x,y,\lambda) \geqslant 0 \tag{5}$$

Because

$$F_{\lambda}'(x y \lambda) = \eta(x y)^{\mathsf{T}} \nabla f(y + \lambda \eta(x y))$$
(6)

$$F''_{\lambda}(x,y,\lambda) = \eta(x,y)^{\mathsf{T}} \, \forall^{2} f(y + \lambda \eta(x,y)) \eta(x,y) \tag{7}$$

From $(5) \sim (7)$, it follows that

$$I[Vf(y + \lambda \eta(x y))^{T}\eta(x y)]^{2} + \eta(x y)^{T}V^{2}f(y + \lambda \eta(x y))\eta(x y) \ge 0$$
(8)

Let $\lambda \rightarrow 0^+$ in (8), we have $f[V(y)^T \eta(x,y)]^2 + \eta(x,y)^T V^2 f(y) \eta(x,y) \ge 0$

Conversely, assume that $\forall x, y \in X$, we have $f(y)^T \eta(x, y)^T \eta(x, y)^T + \eta(x, y)^T \vee^2 f(y) \eta(x, y) \ge 0$.

Then , by the condition C , $\forall \lambda \in (0, 1)$ $y + \lambda \eta(x, y) \in X$ and

 $f[V_{1}(y + \lambda \eta(x, y))^{T} \eta(x, y + \lambda \eta(x, y))]^{2} + \eta(x, y + \lambda \eta(x, y))^{T} V^{2} f(y + \lambda \eta(x, y)) \eta(x, y + \lambda \eta(x, y)) \ge 0$ Thus, $\forall \lambda \in (0,1)$, from condition C, we have $f[F'_{\lambda}(x,y,\lambda)]^2 + F''_{\lambda}(x,y,\lambda) \ge 0$.

Again by Lemma 1 , $F(x, y, \lambda)$ is r-convex function with respect to λ in [0, 1]. By the continuity of f, $F(x, y, \lambda)$ is r-convex function with respect to λ in [0, 1]. Therefore , it follows that f is r-preinvex function with respect to η by Theorem 1. This completes the proof.

Corollary 1 Let $X \subseteq \mathbb{R}^n$ be open invex set with respect to $\eta: X \times X \to \mathbb{R}^n$ and η satisfy condition C. f defined on X is twice continuously differentiable and satisfies condition D. Then f is preinvex function with respect to the vector valued function η if and only if $\forall x \ y \in X$, $\eta(x \ y)^T \bigvee_{i=1}^{n} (y) \eta(x \ y) \geqslant 0$.

Remark 2 Obviously, Theorem 2 is a generalization of Theorem 5.2 which was established by Avriel in [1].

Remark 3 We can verify r-preinvexity of some functions by making use of Theorem 2.

Example 1 Let $X = (-3, -1) \cup (1, 3)$ and X be an open invex set with respect to η , where $\eta(x, y) = (x - y, x, y) \in (-3, -1)$ $(x - y, x, y) \in (-3, -1)$ $(x - y, x, y) \in (-3, -1)$ $(x - y, x, y) \in (-3, -1)$ We can verify that η satisfies condition G.

Let
$$f: X \to \mathbf{R}$$
 be defined by $f(x) = \begin{cases} (x+2)^2, -3 < x < -1 \\ (x-2)^2, 1 < x < 3 \end{cases}$.

Obviously , f is twice continuously differentiable and satisfies condition D.

Furthermore, let $r \ge -\frac{1}{50}$, $\forall x \ y \in X$, we have $f[V f(y)^T \eta(x \ y)]^2 + \eta(x \ y)^T V^2 f(y) \eta(x \ y) \ge 0$. Then, f is r-preinvex function with respect to $\eta(r \ge -\frac{1}{50})$.

Remark 4 It is worth noting that the assumption that η satisfies condition C on X in Theorem 2 is essential. The following example illustrates this point.

Example 2 Let $f(x) = \log(3 - \sin x)$, $\eta(x, y) = \frac{1}{2}x - y$. Obviously, $X = (0, \frac{\pi}{2})$ is open invex set with respect to η . But by the fact that $\eta(y, y + \lambda \eta(x, y)) \neq -\lambda \eta(x, y)$, holds when $x = \frac{\pi}{3}$, $y = \frac{\pi}{6}$, $\lambda = \frac{1}{2}$, we see that η does not satisfy condition C.

Let r = 1, $\forall x \ y \in X$, we have $f[V](y)^T \eta(x \ y)^T \eta(x \ y)^T + \eta(x \ y)^T V^2 f(y) \eta(x \ y) \ge 0$.

But by the fact that $f(y + \lambda \eta(x y)) > \log(\lambda e^{\eta(x)} + (1 - \lambda)e^{\eta(y)})^{\frac{1}{r}}$ holds when $x = \frac{3}{5}$, $y = \frac{1}{10}$, $\lambda = \frac{1}{2}$. Then f(x) is not 1-preinvex function with respect to η .

References:

- [1] Avriel M. r-convex Functions [J]. Mathematical Programming 1972 2 309-323.
- [2] Ben-israel A ,Mond B. What is invexity? [J]. Bulletin of Australian Mathematical Society 1986 28:1-9.
- [3] Weir T ,Mond B. Preinvex functions in Multi-objective Optimization [J]. Journal of Mathematical Analysis and Applications ,1988 ,136 29-38.
- [4] Weir T "Jeyakumar V. A class of nonconvex functions and mathematical programming J]. Bulletin of Australian Math-

ematical Society 1988 38 177-189.

- [5] Antezak T. r-preinvexity and r-invexity in Mathematical Programming J]. Computers and Mathematics with Applications 2005 50 551-566.
- [6] Mohan S R , Neogy S K. On Invex sets and Preinvex functions J J. Journal of Mathematical Analysis and Applications 1995 ,189 901-908.
- [7] Yang X M ,Yang X Q ,Teo K L. Characterizations and Applications of Prequasiinvex Functions J J. Journal of Optimization Theory and Applications 2001 ,110 :645-668.

运筹学与控制论

r-预不变凸函数的一个性质

赵克全,龙莆均,万 轩 (重庆师范大学数学学院,重庆400047)

摘要:首先建立了一类 r-预不变凸函数的一个等价条件,利用该等价条件给出了二次连续可微的 r-预不变凸函数的一个性质;在适当的假设下,证明了如下结果:设 $X\subseteq \mathbf{R}^n$ 是关于向量值函数的开不变凸集 η 满足条件 $\mathbf{C} f: X \to \mathbf{R}$ 是二次连续可微的函数且满足条件 \mathbf{D} . 则 f 是关于 η 的 r-预不变凸函数当且仅当对任意的 $\forall x$, $y \in X$ \mathbf{I} $\mathbf{V} f(y)^T (x,y)^T + \eta (x,y)^T \mathbf{V}^2 f(y) \eta (x,y) \ge 0$ 。本文的主要结果推广并改进了一些已有的主要结论。

关键词:不变凸集 ;-凸函数 ;预不变凸函数 ;-预不变凸函数

(责任编辑 黄 颖)