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Bifurcations in a Delayed Predator-prey Model

XU Chang-jin® CHEN Da-xue

Faculty of Science Hunan Institute of Engineering Xiangtan Hunan 411004 China

Abstract In this paper the dynamics of a delayed predator-prey model with ratio-dependent type functional response are
considered. We show that the asymptotic behavior depends crucially on the time delay parameter. We are particularly inter-
ested in the study of the Hopf bifurcation problem to predict the occurrence of a limit cycle bifurcating from the positive equi-
librium. By choosing the the delay as a bifurcation parameter the length of delay which preserves the stability of the positive
equilibrium is calculated i.e. 0<7<7, . Some numerical simulation for justifying the analytical findings is also provid-
ed. Main conclusions are as follows the positive equilibrium of the system is asymptotically stable for re 0 7, . The sys-
tem undergoes a Hopf bifurcation at the positive equilibrium when 7 =7, k=123 4 j=01 2 and the length of de-
lay is 7, .
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1 Introduction

Since the work of Volterra and Lotka in the mid-1920s time delays were already incorporated into the mathe-
matical models of population dynamics. For a long time it has been recognized that delays have a very complicated
impact on the dynamics of a system. In recent years a lot of predator-prey PP of short models with time delays
have been formulated and studied extensively by many researchers. A great many results on the dynamics of PP
models have been obtained '’ .

In 1969 Hassell and Varley’s ' introduced the following PP model with the Hassell-Varley HYV for short type

functional response
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where x y denote the population of preys and predators at time ¢ respectively. The constants r K ¢ m d and f
are positive constants that stand for the prey’s intrinsic growth rate carrying capacity capturing rate half-satura-
tion constant predator death rate maximal predator growth rate respectively. vy is called the HV constant. In de-
tailis on can see ' . In the typical predator-prey interaction where predator do not form groups so we can as-
sume that y =1 which leads to the so-called ratio-dependent system. Meanwhile considering that the delay may oc-
cur in the competition among preys in this paper we consider a non-autonomous PP model with HV functional re-

sponse and a delay in the prey specific growth term and HV functional response term as follows
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where N, N, denot the population of preys and predators at time ¢ respectively. The meaning of all the constants
are same as those in model 1 . To obtain a deep and clear understanding of dynamics of predator-prey system with

time delay in this paper we will investigate the Hopf bifurcation of system 2 .
2 Stability of the positive equilibrium and local Hopf bifurcations

It is easy to see that system 2 has a unique positive equilibrium E, N N, where

N* _amr —cr+cd .  r—d amr—cr+cd
S

bmr N bdm’r
if the following condition
Hl amr—cr+ed>0 r-d >0
holds. Let N, t =N, t =N N, t =N, t —N, and drop the bar for the simpli-fication of notations then
the linearization of Eq. 2 at E, N; N, is

{Nlt =kN t +kN t-7 +kN, t -1 3
Nyt =LN,t +L,N t—-7 +LN, t -1
where
i} cN; cN; N, . cmN," N, cN;
ky =a-bN ————— k, = —— 2 Ny Ry = 2 T e
mN, + N, mN, + N, mN, + N, mN, + N,
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The characteristic equation of system 3 takes the form
NApA+p, + gr+q, eV +re™ =0 4
where
pr == ki+l py=klq == L+k g =kl ko = kil - Lk
Multiplying e on both sides of 4 it is obvious to obtain
AN apd+p, e+ gA+q +re™ =0 5
In the sequel we will investigate the locations of the roots of the characteristic equation 4 .
For 7 =0 equation 5 becomes
N+ po+q A+p,+q +r, =0 6

It is easy to see that a set of necessary and sufficient conditions which all roots of 6 have a negative real part
is given in the following form
H2 p, +¢q, >0 p, +g, +r, >0
Let A =iw, >0 7 =7, and substituting this into 5 for the sake of simplicity denote w, and 7, by w 7 re-

spectively separating the real and imaginary parts we have

{pz—wz+rl COS WT — P, Sin WT = — ¢, 7
2 .
Py —@ + 1 SN WwT + pw COS WT = — ¢,
By simple calculation the following equations are obtained
2
. P —qw p, —w +T,
sin wT = 8

2 2
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Ccos wT = — 3 3 9
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As is known to all that sin® w7 + cos’wr =1 if the condition

H3 p,q, #0
holds we have
o' -® 0 Fv0+v, =0 10
where
”, _ PPt e TP TP b =g+ b = Gro Pt Gn
Piq, P14
Let
low =o' -0 +0,0 +v0+71, 11
Suppose

H4 10 has at least one positive real root.
If all the coefficients of system 2 are given it is easy to use computer to calculate the roots of 10 . Since
lim,,,.l o =+ we can conclude that if v, <O then 10 has at least one positive real root.

Without loss of generality we assume that 10 has four positive roots denoted by w, w, w; w, respective-

ly. Then by 9 we have
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at which Eq. 5 has a pair of purely imaginary roots *iw,. Let A 7 =a 7 +iw ¢ be theroot of Eq. 5 such
that« 7, =0 w 7, =w,. Due to functional differnetial equation theory for every 7, k=123 4 j=01 2
there exists & >0 such that A 7 is continuously differentiable in 7 for |7 =7, | <&. Substituting A 7 into the
left hand side of 5 and taking derivative with respect to 7 we have
(d)\)71 _ 20 +p e+ g T
dr A A +pA+p, e —re™ A
which together with 7  leads to

Re(@)“ _ { Pigi = 2q, @ cos wr - 2qiw’ +p g, wsin w7 + qfwz}
dr/, qio' + o’ _J
k T= i
Let M = ¢lw; + ¢w; >0. Tt follows from 8 and 9 that
-1
MRe(g—;\_) o= PG =2, ) cos w,T — 2qiw; +piq, @, sin 0, T+ o, =
e
k
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Notice that
-1
sign[Re(d—/\) ] = sign[Re(d—)‘) ]
dT 1':72 dT 1':1'/k

In order to give the main results in this paper it is necessary to make the following assumptlions

H5 Re(i—’\)

T

#0
7

Employing the results of Yang " and Hale "* we have
Theorem 1 Letr k =1234 j=012 be defined by 12 and 7, = min 7, . Suppose that
H, H, H, H, H; hold then the positive equilibrium E, N;° N,” of system 2 is asymplotically
stable for re 0 7, . System 2 undergoes a Hopf bifurcation at the positive equilibrium E, N;° N, when 7 =

7 k=1234 j=012
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3 Estimation of the length of delay to preserve stability

In the present section we will obtain an estimation 7, for the length of the delay 7 which preserves the stabili-
ty of the positive equilibrium E, N, N,” i.e. E, N N, is asymptotically stable if 7 <7 ,.
We consider system 3 in C -7 o R’ with the initial values
N & =¢, & N, ¢ =9, 0,0 =20:1=12¢e -70
Taking Laplace transform of system 3  we get
s—ky N, =k,e "M, s +ke "N, +ke "M, s +ke N, +¢, 0
[ s=1, N, =Le ™M, s +Le " N, +Le "M, s +Le N, +¢p, 0

0
where N, N, are the Laplace transform of N, ¢t N, ¢ respectively and M, s = j e "N, t &t M, s =

13

0

f e "N, t dt.
. < ~ K s
Solving 13 for NV, leads to N, =75 where

Kst =ke” Le "M, s +lLe ™M, s +¢, 0 —1Le™” ke ™M s +ke ™M, s +¢ 0
Js = s=1l, -Le ke - s -k —ke Le™
Following along the lines of 15 and using the Nyquist criterion we obtain that the conditions for local asymptotic
stability of E, N, N, are given by
Im J iw, >0 14
Re J iw, =0 15
where Im  J iw, and Re J iw, are the imaginary part and real part of J iw, respectively and w, is the

small positive root of 15 .

It follows from 14 and 15 that

2 .
Gy > Wy — T — P, SIN W,T — Pi@wy COS W, T 16
P, — wé + 7, COS WyT — Py SIN W,T = — ¢, 17
From 16 we obtain
2
Gy > ‘wo -n _Pz"" ‘Pl ‘wo 18
Then
2
W, — ‘]2_‘P1‘w0_‘r1+P2‘<0 19
2
. = pl+y = Ip|° +4lr +p,|
which leads to wy<w, wherew, = 1 > 1 1 2= . By 17 we have
p2_wg+rl cos w,T — 1 _leSinon:wS_Pz_rl_% 20
. 2 1 2 2 2 . 2 .
Since p, —wp +1, cosw,T -1 < ?‘Pz —w, +r o, 7 and - pyw sin w,7 < |p, |®, T we obtain from

1 .
20 that L,7° + L,r < L, where L, :5\])—2—&)3 +7 \wi L, = \pl\wi L, = wy —p, —1, —¢,. Itis easy

- L, + ./} +4L,L
2 2 "2 the stability of E, N, N,

21,

to see thatif 7 < 7, = of system 2 is preserved.

4 Numerical examples

In this section we give some numerical simulations of a special version of system 2 with ratio-dependent type

functional response to verify the analytical predictions obtained in Section 2. Let us consider the following system
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. 0.3N, t -
Nyt =N1t[1—2N1t—T 2 Tt ]
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0.5N, t -7 +N, t-71 ]
which has a positive equilibrium £, 0.32 0.96 and satisfies the conditions indicated in Theorem 1. When 7 =0

21

N, t = 25[—0.8+

the positive equilibrium E, 0.32 0.96 is asymp-totically stable. The positive equilibrium E, 0.32 0.96 is sta-
ble when 7 <7,=1.94 as is illustrated by the computer simulations see Fig. 1 . When 7 passes through the criti-
cal value 7, the positive equilibrium loses its stability and a Hopf bifurcation occurs i.e. a family of periodic so-

lutions bifurcate from the positive equilibrium £, 0.32 0.96 see Fig.2 .
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Fig.1 Behavior and phase portrait of system 21 with 7=1.9 <7,=1.94. The positive equilibrium £, 0.32 0.96
is asymptotically stable. The initial value is 0.1 0.2
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Fig.2 Behavior and phase portrait of system 21 with 7 =2 >7,~=1.94. Hopf bifurcation occurs from the positive
equilibrium E; 0.32 0.96 . The initial value is 0.1 0.2

5 Conclusions

In this paper we have investigated local stability of the positive equilibrium E, N,° N, and local Hopf bifur-
cation in a predator-prey model with time delay. We have showed that if the conditions HI H2  H3 H4
H5 hold the positive equilibrium E, N;” N, of system 2 is asymptotically stable for all e 0 7, . As the
delay 7 increases the positive equilibrium loses its stability and a sequence of Hopf bifurcations occur at the positive
equilibrium E, N, N, i. e. a family of periodic orbits bifurcates from the the positive equilibrium
E, N N, . Meanwhile the length of delay preserving the stability of the positive equilibrium E, N, N, is
estimated i.e. the length of delay is 7,. Numerical simulations have also been demonstrated the validity of our

theoretical analysis.
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