Sep. 2012 Vol. 29 No. 5

Operations Research and Cybernetics

DOI: CNKI: 50-1165/N. 20120915. 2319. 002

ε-Efficiency in Vector Optimization Problems

ZHAO Ke-quan, WAN Xuan, PENG Jie

(College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China)

Abstract: In this paper, a class of vector optimization problems is considered and ε -efficiency and two kinds of proper efficiency, namely ε -Benson proper efficiency and ε -Geoffrion proper efficiency are investigated. The equivalence is proved for two kinds of ε -proper efficiency. At the same time, ε -efficiency is characterized by making use of the classic scalarization method named as Benson's method which was introduced by Benson: x_0 is an ε -efficient solution of problem (VP) if and only if Ψ =0 for the scalar optimization problem (VPv) corresponds to (VP). Our results not only improve and generalize some known results and but also show that ε -proper efficiency introduced by Rong Weidong and Ma Yi coincides with ε -proper efficiency introduced by Liu Jen-chwan.

Key words: vector optimization; ε -efficiency; ε -proper efficiency; scalarization

中图分类号: O221.6

文献标志码:A

文章编号:1672-6693(2012)05-0006-04

It is well known that the concepts of approximate solution has been playing an important role in vector optimization problems. Kutateladze initially introduced the concept of approximate solution named as ε-efficient solution and established vector variational principle, approximate Kuhn-Tucher conditions and approximate duality theorems in [1]. ε-Efficiency is an important kind of approximate efficiency in vector optimization problems and has been studied by some scholars in [2-4]. Recently, Liu proposed the concept of an ε-proper efficient solution by making use of the idea of Geoffrion proper efficiency and obtained some linear scalarization results in [5]. Rong and Ma proposed the concept of ε-proper efficiency in terms of the idea of Benson proper efficiency and established the linear scalarization theorems in [6].

Motivated by the works of [5-8], we prove the equivalence for two kinds of ε -proper efficiency introduced by Liu and Rong, respectively. Furthermore, we obtain some scalarization results of ε -efficiency by making use of the classic scalarization method named as Benson's method.

1 Preliminaries

In this section, we give some definitions and notations which will be used throughout this paper. Let \mathbf{R}^n and \mathbf{R}^m be n, m dimensional Euclidean space, respectively, \mathbf{R}^m_+ be the points in \mathbf{R}^m with all coordinates positive or null and \mathbf{R}^m_+ be the points in \mathbf{R}^m with all coordinates strictly positive. Analogous definitions for \mathbf{R}^m_- , \mathbf{R}^m_- . For any $x,y \in \mathbf{R}^m$, we consider the following inequalities, $x \geq y \Leftrightarrow x_i \geqslant y_i$, for any $i=1,2,\cdots,m$; $x \geqslant y \Leftrightarrow x \geq y$ and $x \neq y$; $x > y \Leftrightarrow x_i > y_i$, for any $i=1,2,\cdots,m$.

^{*} **Received:** 02-22-2012 网络出版时间:2012-9-15 23:19

Foundation: The National Science Foundation of China (No. 11126348; No. 11171363); the Natural Science Foundation Project of Chongqing (No. 2011BA0030); the Special Fund of Chongqing Key Laboratory (No. CSTC2011KLORSE02); the Education Committee Research Foundation of Chongqing (No. KJ110625)

First anthor biography: ZHAO Ke-quan, male, Lecturer, Ph. D. student, Research fields: Multiobjective optimization, nonsmooth analysis and optimization.

The interior and closure of a set A are denoted by int A and cl(A), respectively. The generated cone of a set A is defined as $cone(A) = \{\lambda a \mid \lambda \ge 0, a \in A\}$.

It is well known that cone(A) is a convex cone if the set A is convex.

Consider the following vector optimization problem:

(VP) min
$$f(x)$$

s. t. $x \in S$

where $S \subseteq \mathbb{R}^n$ and $f: S \rightarrow \mathbb{R}^m$. We assume that the feasible set S of (VP) is nonempty. Let $J = \{1, 2, \dots, m\}$.

Definition $1^{[1]}$ Let $\varepsilon \in \mathbb{R}_+^m$. A point $x_0 \in S$ is said to be an ε -efficient solution of (VP) if there is no $x \in S$ such that $f(x) \leq f(x_0) = \epsilon$. Denote $\epsilon = E(f(S), \mathbf{R}_+^m)$ by the ϵ -efficient solution set of (VP).

Definition $2^{[5]}$ A point $x_0 \in S$ is said to be an ε -proper efficient solution of (VP) if, $| \cdot \rangle x_0$ is an ε -efficient solution of (VP); \parallel) there exists a scalar M>0 such that for each i, we have $\frac{f_i(x_0)-f_i(x)-\varepsilon_i}{f_i(x)-f_i(x_0)+\varepsilon_i} \leqslant$ M, for some j such that $f_i(x_0) \le f_i(x) + \varepsilon_i$, whenever $x \in S$ and $f_i(x_0) \ge f_i(x) + \varepsilon_i$.

Denote $\varepsilon - PE(f(S), \mathbf{R}_{+}^{m})$ by the ε -proper efficient solution set of (VP).

Definition $3^{[6]}$ A point $x_0 \in S$ is said to be an ε -proper efficient solution of (VP) if

$$clcone(f(S) + \mathbf{R}_{+}^{m} + \varepsilon - f(x_0)) \cap (-\mathbf{R}_{+}^{m}) = \{0\}$$

2 Equivalence of ε-proper efficiency

In this section, we prove the equivalence of the definition of ε -proper efficiency introduced by Liu in $\lceil 5 \rceil$ and the definition of ε -proper efficiency introduced by Rong and Ma in $\lceil 6 \rceil$.

Theorem 1 Definition 2 is equivalent to Definition 3.

Assume that x_0 satisfies Definition 3, it is clear that x_0 is an ε -efficient solution of (VP). Assume that \parallel) is not true in Definition 2. Let M_k be an unbounded sequence of positive numbers. Without loss of generality, assume that for all M_k , there are $x^k \in S$ such that $f_1(x_0) > f_1(x^k) + \varepsilon_1$ and

$$\frac{f_1(x_0) - f_1(x^k) - \varepsilon_1}{f_i(x^k) - f_i(x_0) + \varepsilon_i} > M_k \tag{1}$$

for any $j \in \{2,3,\dots,m\}$ with $f_j(x_0) < f_j(x^k) + \varepsilon_j$. Choosing a subsequence if necessary, we can assume that $\widetilde{I} = \{i \in J \mid f_i(x^k) > f_i(x_0) - \varepsilon_i\}$ is constant for all k. Since x_0 is an ε -efficient solution of (VP), \widetilde{I} is a nonempty set. Let

$$t_{k} = \frac{1}{f_{1}(x_{0}) - f_{1}(x^{k}) - \varepsilon_{1}}$$
 (2)

 $t_{k} = \frac{1}{f_{1}(x_{0}) - f_{1}(x^{k}) - \varepsilon_{1}}$ $clearly, t_{k} > 0 \text{ for all } k. \text{ Let } r_{i}^{k} = \begin{cases} 0, i = 1 \\ 0, i \in \widetilde{I} \\ f_{i}(x_{0}) - f_{i}(x^{k}) - \varepsilon_{i}, i \neq 1 \text{ and } i \notin \widetilde{I} \end{cases}$ $clearly, r^{k} \in \mathbf{R}_{+}^{m} \text{ for all } k. \text{ From (1)}$ $f_{i}(x_{0}) - f_{i}(x^{k}) - \varepsilon_{i}, i \neq 1 \text{ and } i \notin \widetilde{I}$ and (2), we have $t_{k} (f_{i}(x^{k}) + r_{i}^{k} + \varepsilon_{i} - f_{i}(x_{0})) \begin{cases} = -1, i = 1 \\ \in \left(0, \frac{1}{M_{k}}\right), i \in \widetilde{I} \end{cases}$ The sequence converges to d = 1

 $(-1,0,0,\cdots,0)$ since $M_k \to \infty$. Obviously, $d \in clcone(f(S) + \mathbf{R}_+^m + \varepsilon - f(x_0)) \cap (-\mathbf{R}_+^m)$. There is a contradiction.

Conversely, assume that x_0 is an ε -efficient solution of (VP) and x_0 does not satisfy Definition 3.

Then there exists a nonzero vector d such that

$$d \in clcone(f(S) + \mathbf{R}_{+}^{m} + \varepsilon - f(x_{0})) \cap (-\mathbf{R}_{+}^{m})$$
(3)

Without loss of generality, we may assume that $d_1 \le -1$ and $d_i \le 0$ for $i = 2, 3, \dots, m$. Hence from (3), there exist $\{t_k\} \subseteq \mathbb{R}_+$, $\{x^k\} \subseteq S$ and $\{r^k\} \subseteq \mathbb{R}_+^m$ such that

$$t_k(f(x^k) + r^k + \varepsilon - f(x_0)) \rightarrow d \tag{4}$$

Choosing subsequences if necessary, we can assume that $I = \{i \in J \mid f_i(x^k) > f_i(x_0) - \varepsilon_i\}$ is the same for all k and nonempty by using ε -efficiency of x_0 . Let M > 0. From (4) and $t_k \to \infty$, we have that there exists k_0 such that for all $k \ge k_0$

$$f_1(x^k) - f_1(x_0) + \varepsilon_1 < -\frac{1}{2t_k}$$
 (5)

and

$$f_i(x^k) - f_i(x_0) + \varepsilon_i \leqslant \frac{1}{2Mt_k}, i = 2, 3, \dots, m$$

$$(6)$$

In particular, for $i \in I$ and $k \ge k_0$, it follows that from (6),

$$0 < f_i(x^k) - f_i(x_0) + \varepsilon_i \le \frac{1}{2Mt_k}$$

$$(7)$$

Hence, from (5) and (7), for $k \ge k_0$ and $i \in I$, we can obtain that $\frac{f_1(x_0) - f_1(x^k) - \epsilon_1}{f_i(x^k) - f_i(x_0) + \epsilon_i} > M$. There is a contradiction.

Remark 1 If $\varepsilon = 0$, then Theorem 3.1 reduces to Theorem 3.2 in [7].

3 Scalarization and ε-efficiency

In this section, we obtain some scalarization results of ε -efficiency by making use of the classic scalarization method as Benson's method.

Consider the following scalar optimization problem corresponds to (VP):

$$(\operatorname{VP}_{v}) \qquad \Psi = \sup \sum_{j \in J} v_{j},$$
s. t.
$$\begin{cases} f_{j}(x_{0}) - v_{j} - \varepsilon_{j} - f_{j}(x) = 0, \forall j \in J \\ v_{j} \geqslant 0, \forall j \in J \\ x \in S \end{cases}$$

Theorem 1 $x_0 \in \varepsilon - E(f(S), \mathbf{R}_+^m) \Leftrightarrow \Psi = 0.$

Proof Let (x,v) be a feasible solution of (VP_v) . From $v_j \ge 0$ for $j \in J$ and the definition of v_j as $f_j(x_0) - \varepsilon_j - f_j(x)$, we have

$$\sum_{j \in I} v_j = 0 \Leftrightarrow v_j = 0, j \in J \Leftrightarrow f_j(x_0) - \varepsilon_j - f_j(x) = 0, j \in J$$
(8)

Assume that $x_0 \notin \varepsilon - E(f(S), \mathbf{R}_+^m)$. Then there exists $\hat{x} \in S$ such that $f(\hat{x}) \leq f(x_0) - \varepsilon$. This means that $v_j > 0$ for some $j \in J$. But for $\Psi = 0$ and (8), we know that it is impossible, i. e., $x_0 \in \varepsilon - E(f(S), \mathbf{R}_+^m)$. On the other hand, if $x_0 \in \varepsilon - E(f(S), \mathbf{R}_+^m)$, it is clear that $v_j = 0$ for $j \in J$ and hence $\Psi = 0$.

Theorem 2 If the supremum Ψ for (VP_v) is finite and is attained at the point (x_0, v^0) , then $x_0 \in \varepsilon - E(f(S), \mathbf{R}_+^m)$.

Proof Assume that $x_0 \notin \varepsilon - E(f(S), \mathbf{R}_+^m)$. Then there exists $\hat{x} \in S$ such that $f(\hat{x}) \leq f(x_0) - \varepsilon$ with at least one strict inequality. Define $\hat{v} = f(x_0) - f(\hat{x}) - \varepsilon$. Then

$$\hat{v}_{j} = f_{j}(x_{0}) - f_{j}(\hat{x}) - \varepsilon_{j} \geqslant f_{j}(x_{0}) - f_{j}(x_{0}) + \varepsilon_{j} = \varepsilon_{j} \geqslant 0, j \in J$$

Hence, (\hat{x}, \hat{v}) is feasible for (VP_v) and $\hat{v}_j > v_j^0$ for some $j \in J$. Therefore, $\sum_{j \in J} \hat{v}_j > \sum_{j \in J} v_j^0$. This is impossible because (x_0, v_j^0) is an optimal solution of (VP_v) .

References:

- [1] Kutateladze S. Convex ε-programming [J]. Soviet Math Dokl, 1979, 20; 391-393.
- [2] White D J. ε-Efficiency [J]. Journal of Optimization Theory and Applications, 1986, 49:319-337.
- [3] Dutta J, Vetrivel V. On approximate minima in vector optimization [J]. Numerical Functional Analysis and Optimization, 2011, 22:845-859.
- [4] Jimnez B, Novo V. Optimality conditions via scalarization for a new ε-efficiency concept in vector optimization problem [J]. European Journal Operations Research, 2010,201:11-22.
- [5] Liu J C. ε-Properly efficient solutions to nondifferentia-

- ble multiobjective programming problem [J]. Applied Mathematics Letters, 1999, 12:109-113.
- [6] Rong W D, Ma Y. & Properly efficient solutions of vector optimization problems with set-valued maps [J]. OR Transactions, 2000(4):21-32.
- [7] Benson H P. An improved definition of proper efficiency for vector maximization with respect to Cones [J]. Journal of Optimization Theory and Applications, 1979, 71: 232-241.
- [8] Qiu J H. Dual characterization and scalarization for Benson proper efficiency [J]. SIAM Journal of Optimization, 2008,19:144-163.

运筹学与控制论

向量优化问题的 ε-有效性

赵克全,万 轩,彭 婕

(重庆师范大学 数学学院, 重庆 400047)

摘要:研究了一类向量优化问题的 ε-有效性和两类真有效性,包括 ε-Benson 真有效性和 ε-Geoffrion 真有效性。首先证明了这两类真有效性之间的等价关系。同时,利用 Benson 标量化方法给出了向量优化问题的 ε-有效解的一些标量化结果。 x_0 是问题(VP)的 ε-有效解当且仅当对应于问题(VP)的表量化问题(VP $_v$)有 Ψ =0。本文的主要结果不仅是对一些已有结果的改进与推广,而且也表明戎卫东与马毅提出的 ε-真有效性与 Liu Jen-chwan 提出的 ε-真有效性的一致性。

关键词:向量优化; ϵ -有效性; ϵ -真有效性;标量化

(责任编辑 黄 颖)