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g-Efficiency in Vector Optimization Problems
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Abstract: In this paper, a class of vector optimization problems is considered and e-efficiency and two kinds of proper
efficiency, namely e-Benson proper efficiency and e-Geoffrion proper efficiency are investigated. The equivalence is
proved for two kinds of € -proper efficiency. At the same time. e-efficiency is characterized by making use of the clas-
sic scalarization method named as Benson’s method which was introduced by Benson:x, is an e-efficient solution of
problem (VP) if and only if ¥=0 for the scalar optimization problem (VPv) corresponds to (VP). Our results not
only improve and generalize some known results and but also show that e-proper efficiency introduced by Rong Wei-
dong and Ma Yi coincides with e-proper efficiency introduced by Liu Jen-chwan.
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It is well known that the concepts of approximate solution has been playing an important role in vector
optimization problems. Kutateladze initially introduced the concept of approximate solution named as e-ef-
ficient solution and established vector variational principle, approximate Kuhn-Tucher conditions and ap-
proximate duality theorems in [1]. e-Efficiency is an important kind of approximate efficiency in vector op-
timization problems and has been studied by some scholars in [2-4]. Recently, Liu proposed the concept of
an e-proper efficient solution by making use of the idea of Geoffrion proper efficiency and obtained some
linear scalarization results in [5]. Rong and Ma proposed the concept of e-proper efficiency in terms of the
idea of Benson proper efficiency and established the linear scalarization theorems in [6].

Motivated by the works of [5-8], we prove the equivalence for two kinds of e-proper efficiency intro-
duced by Liu and Rong, respectively. Furthermore, we obtain some scalarization results of e-efficiency by

making use of the classic scalarization method named as Benson’s method.

1 Preliminaries

In this section, we give some definitions and notations which will be used throughout this paper. Let
R* and R” be n, m dimensional Euclidean space, respectively, R” be the points in R” with all coordinates
positive or null and R’ | be the points in R” with all coordinates strictly positive. Analogous definitions for
R” ,R” _. For any z,yER", we consider the following inequalities. x=y&x, =y, , for any i=1,2,+,m;

r=y&r=y and 2% y; x>y&Sx, >y, for any i=1,2, ,m.
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The interior and closure of a set A are denoted by int A and ¢/(A), respectively. The generated cone
of a set A is defined as cone(A)={Aa|21=0,a€ A}.

It is well known that cone(A) is a convex cone if the set A is convex.

Consider the following vector optimization problem:

(VP) min f(x)
s. t. x€S
where SER" and f:S—>R”. We assume that the feasible set S of (VP) is nonempty. Let J=1{1,2,-,m}.

Definition 177  Let e€R”. A point z, € S is said to be an e-efficient solution of (VP) if there is no x € S
such that f(x)<f(x,) —e. Denote e—E(f(S).R%) by the e-efficient solution set of (VP).

Definition 2 A point x, € S is said to be an e-proper efficient solution of (VP) if, | )z, is an e-effi-
fi(xo) —fi(x) & <
fi(@) = fi(xo) e
M, for some j such that f; (x,)<f;(x) +¢;» whenever x&€ S and f, (xy)>fi (x) te.

Denote e —PE(f(S) »R% )by the e-proper efficient solution set of (VP).

cient solution of (VP); i ) there exists a scalar M >0 such that for each i, we have

Definition 31 A point x, € S is said to be an e-proper efficient solution of (VP) if
cleone (f(S) +RY +e—f(x0)) N (—R%)={0}

2 Equivalence of g-proper efficiency

In this section, we prove the equivalence of the definition of e-proper efficiency introduced by Liu in [5] and
the definition of e-proper efficiency introduced by Rong and Ma in [ 6].

Theorem 1 Definition 2 is equivalent to Definition 3.

Proof Assume that x, satisfies Definition 3, it is clear that ax, is an e-efficient solution of (VP). As-
sume that i ) is not true in Definition 2. Let M, be an unbounded sequence of positive numbers. Without
loss of generality, assume that for all M, , there are 2* € S such that f, (x0) > f1 (2*) +e, and

(o) — fi(a") —e
A AR

for any j € {2,3,--,m} with f; (x0)<f; (z") t¢;. Choosing a subsequence if necessary, we can assume

that I= (€T | fi(x")>Ffi(xo) e} is constant for all k. Since x, is an e-efficient solution of (VP), lisa
nonempty set. Let

1

T ) —fi () —a 2)

Ly
0,i=1
Clearly,t,>>0 for all k. Let ri= O,sz} . Clearly, »*€R"” for all k. From (1)
Fi(xo) — fi(a')—eriF] and i€ 1
=—1,i=1

1 7
and (2), we have ¢, (fi(z")+rite—fi(x0)) € (O’M) €1 The sequence converges to d =

—0.i%1 and i€ I
(—1,0,0,++,0) since M,—>o0. Obviously,d € clcone (f(S)+R" +e—f(x0)) N (—R%). There is a con-
tradiction.

Conversely, assume that x, is an e-efficient solution of (VP) and x, does not satisfy Definition 3.
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Then there exists a nonzero vector d such that
d € clcone(f(S)+RY +e—f(x)) N (—RY) (3)
Without loss of generality, we may assume that d,<—1 and d;,<<0 for i=2,3,++,m. Hence from (3),
there exist {z;} CRy ,{2*}CS and {r*} CR" such that
o (f (@) +rtte—f(a))—>d 4
Choosing subsequences if necessary, we can assume that }: (GET| fi(x*)>fi(xy) e} is the same for

all £ and nonempty by using e-efficiency of x,. Let M=>0. From (4) and ¢,—>o, we have that there exists
k, such that for all A=k,

fl (1"3)_][1 (1’0)+€1<_21 (5)
ty
and f‘i(l‘k)ifr(fo)+€;<21\]4t W I1=2,35.m (6)
k

In particular, for iE} and =k, , it follows that from (6),

. . 1
(Y — F <~ 1
0<fi(z") f'(xo)_'_e'\ZMtk P
_ _ kN
Hence, from (5) and (7), for k.=k, and i € I, we can obtain that Si(eo) =/ @) —e >M. There is a

fi (1l) —f (I<>)+€1

contradiction.

Remark 1 If e=0, then Theorem 3.1 reduces to Theorem 3.2 in [7].

3 Scalarization and g-efficiency

In this section, we obtain some scalarization results of e-efficiency by making use of the classic scalar-
ization method as Benson’s method.

Consider the following scalar optimization problem corresponds to (VP)

(VP W:suva,,

€l
fi(xo) —v —& — fi(x)=0,Vje&]
s. t. v, =0,YV;€ ]
xr €S
Theorem 1 x,Ce—E(f(S),R")=S¥=0.
Proof Let (x,v) be a feasible solution of (VP,). From v;=0 for j € J and the definition of v;

as fi(xy)—¢— f;j(x), we have

Div, =080, =0, € JSf, (x0)—¢, — f;(x)=0,j € J (8

el

Assume that x, € e — E (f(S)-R” ). Then there exists *x € S such that f(¥)< f(x,) —e. This
means that v;>>0 for some j€ J. But for ¥=0 and (8), we know that it is impossible, i.e , 2, €Ce—
E(f(S),R%). On the other hand, if x, €e—E(f(S) R% ), it is clear that v; =0 for j &€ J and hence ¥=0.

Theorem 2 If the supremum ¥ for (VP,) is finite and is attained at the point (x,,v") s then 2, Ee—
E(f(S).R").

Proof Assume that x, €e—E(f(S).R% ). Then there exists x € S such that f(2)< f(x,) —e¢ with
at least one strict inequality. Define v= f(x,) — f(Z) —e. Then

V=i (x0) = fi (X)) —e; =1 (x0) — fi (w0) te;=e;=0,5€ ]
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Hence, (¥,9) is feasible for (VP,) and ,>! for some j € J. Therefore, » .9, > > 0’

ble because (x,,v") is an optimal solution of (VP,).
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