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On Characterizing Solution Sets of Nonsmooth B-Preinvex
Optimization Problems
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Abstract In this paper various characterizations of optimal solution sets of nonsmooth B-preinvex optimization problems
with inequality constrains are given. Firstly making use of Clarke’ s subdifferential we establish the optimality condition for
this kind of optimization problem secondly we presented a property about the solution set S of constrained B-preinvex opti-
mization proble finally five equivalent characterizations of the solution set are obtained thatis S = xe M ‘ Enzxa
=0 3¢ecdfx = xeM| énzx =03éecdfx = xeM| €nxz = ¢nzx 3FéeC:
ledfx = xeM| énxz =¢nzx 3FéecCz (ecdfx = xeM| énxz = {n:z
x =0 3&eCz [ edfr . Anexampleis given to illustrate that five solution sets are equal i.e. S = 0
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It is well known that when an optimization problem has multiple optimal solutions dual characterizations of the
solution set are useful to characterize their boundedness and also for understanding the behavior of the solution
methods. Mangasarian ' Burke and Ferris * initially presented some excellent characterizations of the solution set
for convex minimization problems over convex set when one solution is known. Since then various extensions of
these solution set characterizations to convex vector minimization problems pseudolinear optimization programs and
pseudoinvex extremum problems have been given in  3-7 . Some recent related study can be found about pre-in-
vexity and the applications in optimization theory in 8-11

The purpose of this article is to establish Lagrange multiplier characterizations of the solution set of the minimi-

zation of nonsmooth B-preinvex function subjected to explicit inequality constraints.

1 Prelininaries

Throughout this paper let X CR" be nonempty and denote by R” the set of nonnegative real numbers. Sup-
pose that f X—>R and g, X—>R i=1 2 m  be locally Lipschitz functions. n X x X—R and b, X x X x
[0 1]>R, =012 m  such that Ab,(x y A) e [0 1] forallx yeX and A [0 1].

In this section we give some basic concepts and Lemmas which will be used in this paper.

Definition 1 * A set XCR" is said to be invex with respect to in short w.r.t. 7 if there exists an X
x X—R such that for anyx yeX A [0 1] y+An(x y) eX.

Definition 2 °  Let XCR" be a nonempty invex set w. r. t. 7. fis said to be B-preinvex on X w.r.t. 5 b
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ifforanyx yeX X e[0 1] f(y+An(x v))<Ab(x y A)f(x) + (1 =Ab(x y A))f(y) f XCR">R is said
to be locally Lipschitz at a point x € X if there exists constant K >0 such that |[f(x) —f(y) |<K||x -y | for all
x y in a neighbourhood of x. We say that f is locally Lipschitz on X if it is locally Lipschitz at any point in X.

Let f be a locally Lipschitz at a given point x € X. The Clarke’ s '* generalized directional derivative of f at x
€ X in the direction of a vector v € R" denoted by /*(x v) is defined by

—1i Sy +Av) =f(y)
Sl o) =lim op =Y

and the Clarke’ s '* generalized subdifferential of f at x € X denoted by 9°f(x) is defined by
af(x) ={é eR" f/(x v)= ¢v VYveR'}

When £ is locally Lipschitz at x € X f is said to be regular '* at « if it is directionally differentiable at x e X
and if f*(x v) =/ (x v) VveR"

Lemma 1 ®*  Let f be a locally Lipschitz function on X. If f is B-preinvex w.r.t. 7 b at y € X and
lim, | (b(x y A) =b(x y O)for any x y € X. Furthermore f is regular at y. Then b(x y 0)[f(x) =f(y)]= & 7
(v y) VYEedf(y) x yelX

In this paper we consider the following Lipschitz B-preinvex optimization problem with inequality constraints

min f( x)

s.t. veD ={xeX|g(x)<0 iel={12 m}}
where XCR" is an invex set w.r. t. 7 f X—R is a Lipschitz B-preinvex function w.r.t. 5 b, g, X—>R(ie!) are
Lipschitz B-preinvex functions w. r. t. the same n and b, where b,(x v 0) >0(ie {0} UI) if x#y. Assume that
the solution set of the problem P denoted by S ={x e D|f(x)<f(y) VyeD} is nonempty. Let xeD I(x) =
{iellg (x) =0} and I(x) ={iel(x) | A, >0}. It follows from 4 that the solution set S of the problem P is
an invex set w.r.t. 7.

For the problem P Clarke " and Long et al. * proved the following Karush Kuhn Tucker necessary and
sufficient optimality condition respectively.

Suppose that f'is a B-preinvex w.r.t. 5 b, lim, ,b,(x y A) =b,(x y 0)(iel) for any x y e X f and g,
(i el) are regular at z. Furthermore assume that some suitable constraint qualifications be satisfied. Then z e S if

and only if there exists Lagrange multiplier u = (u, u, W) € R" such that
0edf(2) + Y, wdg(2) 1

el

wi=0 Ag/(z) =0 Yiel 2
2 Characterizations of the solution sets

In this section we present the characterization of the solution set of the problem P in terms of Clarke’ s
subdifferentials and Lagrange multipliers.

Theorem 1 For the problem P let ze S. Suppose that the optimality conditions 1 and 2 hold with a
Lagrange multiplier u = (w, ., ) € R" limy ob,(x y A) =b,(x y 0)(i=12 m)for any x ye X f
and g,(iel) are regular at z. Then Z w:g:(z)=0forallxeSand /(- )+ 2 w:g:( ) is constant on S.

iel z ielCz)

Proof From 1 there existé e 9°f(z) and e 9°g,(2) (i el) such that
577(902) +2/-Li b, n(x z) =0 3
tel

For each x € S then f(x) =f(z). By the B-preinvexity of f w.r.t. 17 and Lemma 1 we obtain that for any &
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e 9/(2)
& n(xz) <O 4
In follows from 3 and 4 that z w, 0, p(x z) =0. i.c.
ielCz)
2 wi 0, m(xz) =0 5
ielC)

By the B-preinvexity of g; (i€l(z)) w.r.t. n and Lemma 1 it is clear that for any 7, € 0°g; (2)
bi(x z 0)[g,(x) —g,(2)]= m; n(x z) . Then

b,(x z 0) [ Z migi (x) — z ,uig,-(z)] = Z pi 0; m(x z) 6
iICo i€l il
From 2 5 and 6 it follows that z g (x) = z w:g;(z) = 0. By the feasibility of x we can ob-
iEICo iETCo

tain that 2 w:2:(x) <0 . Hence it is obvious that 2 w;2:(x) =0 . Consequently f(. )+ Z w.g; (¢ ) is con-

ielC2D ielCz) ielCz)

stant on S.

Theorem 2  For the problem P let z e S. Suppose that the optimality conditions 1 and 2 hold with a
Lagrange multiplier u = (u; w, ) €R™ lim, (b, (x ¥y A) =b,(x y 0)(iel) foranyx yeX fand g, ie
I are regular at z  Denote C (z) = {&edf(x)| én(xz) =0 YxeD} and M =
{xeX|g,(x)=0 Viel(z) g(x)<0 Yiel\l(z)}.

Then S=5,=S5,=5,=S5,=S; where

S, ={xeM| & n(zx) =0 Féecof(x)}
S, ={xeM| & n(zx) =0 Féecof(x)}
Sy ={xeM| &n(x2) = {n(zx) FéeC(z) {edf(x)}
Sy ={xeM| £ n(xz) = {n(zx) Féel(z) {edf(x)}
Ss ={xeM| én(xz2) = {n(zx) =0 FéeC(z) {eaf(x)}
Proof 1 SCS,. LetxeS. By theorem I we have Y u.g;(x) =0. From 2 it follows that g,(x) =

ielCz)

0 VYiel\(z). Thatis xeM. Fromx e S and ze S we have x + Anp(z x) € S for any A € [0 1]. Thus f
(x+2An(z x)) =f(x) we have

SOy + Az ) = f(y) >f(y +An(z ) - f(x)

= =0
| y—x Hsllspoq <5 A A
Thus we can obtain that f*(x 7(z x)) =lim f?g)f(y +/\n(z/\x)) ati6)) =0.
yoox
Then there exists £ € 9°f(x) such that
& n(zx) =0 7

On the other hand fromx e S and ze S clearly f(x) =f(z). From the B-preinvexity of f w.r. t. n and Lem-
ma 1 it follows that ¢ n(z x) <O for any £ € 9°f(x). In particular
& n(zx) <O 8

From 7 and 8 it follows that & n(z x) =0. Thatis xeS,. Thus SCS,.
2 Tt is clear that S, CS,.
3 S5,CS. Assume that x €S, we have x e MCD and

En(zx) =0 F€eof(x) 9
By the B-preinvexity of fw.r.t. 7 Lemma | and 9  we have f(z) =2f(x). From ze S it follows that f
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(2) =f(x). Thatis x €S. Thus S,CS.

4 SCS,. Let x € S. From the proof of I ~ we have x € M and there exists £ € 9°/(z) e 9°f(x) such that ¢
n(x z) = £ n(zx) =0. Clearly &eC(z). Thus x €S, and we have SCS,.

5 Tt is clear that S; CS,.

6 S,CS. Assume that x €S, we have x e MC D and

Em(vs) = Emiz2) 3EeC(x) Eedf(x) 10

Due to £ C(z) and 10  we have [ n(z x) =0. By the B-preinvexity of f w.r.t. 17 and Lemma 1 we
have f(z) =f(x). From ze S it follows that f(z) =f(x). That is xeS. Thus S, CS.

7 SCS;. From the proof of 4 it follows that SCS..

8 S;C8.Clearly S;C€S8;. From5 and 4 it follows that S; €5, CS. Thus S;CS.

The following example illustrate the above Theorem 2.

Example 1 Consider the following constrained B-preinvex optimization problem P .
min f(x) = |«
d
Bt g, (x) = *x+f‘x‘ 1<0
b o 1 1
E g (x) = -jx—?\xKO
U xeX=R
We can verify that f and g;(i =1 2) are Lipschitz with L =2. Moreover let
-y x=0 y=0 g =0 y=0
Be -y x<0 y<0 H x<0 y<0
n(x y): =0 bo(x y A): =
g x=0 y<0 -A x=0 y<0
U_y x<0 y=0 U -A? x<0 y=0
|jl x=0 y=0 g =0 y=0
b 0 x<0y<0 b( ) H x<0 y<0
X : X . =
ey E! A =0y 2 EI—AZ x=0 y<0
-1 x<0 y=0 U-ax x<0 y=0

Note that the set of feasible solutions for P is D =

[ -1 0.5]. It is not difficult to prove that all hypotheses

of Theorem 2 are fulfilled. Clearly z=0&S and /(z) ={2}. Moreover letu =(0 1). We can verify that the op-

timality conditions 1

and 2 hold with the Lagrange multiplier /(z) = {2}. We can verify that Theorem 2 are

true. The solution set can be described as S=8, =S, =S, =S, =55 ={0}.
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