三峡地区资源环境生态研究

DOI 10. 11721/cqnuj20130111

重庆江北砾岩的砾石统计及其沉积环境探究*

张宜梅¹²,王建力¹³,钟 俊⁴

(1. 西南大学 地理科学学院, 重庆 400715; 2. 重庆市潼南中学, 重庆 潼南 402660;

3. 西南大学 三峡库区生态环境教育部重点实验室;4. 化学化工学院,重庆 400715)

摘要 江北砾岩的砾组分析及其测年表明,重庆北碚西师附中剖面的江北砾岩在 24.3 kaB. P. 至 10 kaB. P. 期间,总体经历 了细→粗→细两个沉积旋回。具体又可以细分为了 7 个小的粗→细的沉积旋回,在此基础上还叠加了更多更小尺度的 粗、细变化,推测这些砾度的变化主要与气候干湿的频繁波动有关。研究发现重庆及其上游地区在 24.3 kaB. P. 至 10 kaB. P. 期间爆发了 7 次古洪水,其中 22.5 kaB. P. 前后沉积了长轴为 31 cm 的砾石,由此推算此时的古洪水量达到约 119 690.783 m³·s⁻¹,为特大洪水量级,表明当时的水动力相当强,重庆及其上游地区在该时期降水强度达到最大,但是 该层的厚度较小,推测此次强降水过程时间较短。研究认为,由于砾度有 7 次粗→细的过程,因此在 24.3 kaB. P. 至 10 kaB. P. 期间,重庆及其上游地区应该经历了 7 次降水多→少的过程,显示了 24.3 kaB. P. 至 10 kaB. P. 期间重庆及其上 游地区降水强度变化较大。在相对湿润期降水充沛,河流水动力较强,更大砾径的砾石被洪水带至河漫滩或边滩沉积,反 之在相对干旱期降水较少,河流水动力较弱,能被带至该地沉积的砾石砾径相对较小,许多细粒砂被带至此地沉积从而在 砾岩中形成了许多砂岩或砂砾互层。

关键词 江北砾岩 沉积环境 砾组分析 重庆

中图分类号 :P512.2⁺2 ;P588.2

文献标志码:A

文章编号:1672-6693(2013)01-0048-05

江北砾岩是第四纪晚近阶段的一种次生表生胶结 岩类,广泛分布于四川盆地及其邻近地区河流沿岸一 级阶地,包括砾岩和砂岩,因此又被称为江北期砂砾 岩^[1-2]。它能反映自身成岩时的古洪水、古气候、古植 被等古环境信息,是研究本地区晚更新世末至全新世 初古环境演变的不可多得的载体。与其他河流沉积物 不同,江北砾岩是在地表胶结成岩且只分布在一级阶 地中上部。随着三峡大坝的修建与库区的开发,加强 对长江中上游的环境研究显得尤为重要,因此本研究 通过对江北砾岩的砾石进行统计来研究重庆及其周边 地区在晚更新世末至全新世初的古环境信息,进而对 该地区气候变化规律进行探讨。

1 样品采集与测量

本次砾石统计样品均取自重庆市北碚区西师附中 剖面(29°38'N,106°30'E),该剖面为典型的砂、砾岩互 层(图1)。由于砾组分析主要是针对砾石而言,因此 本研究主要就该剖面中的fz1、fz3、fz4、fz5、fz7、fz9、 fz11、fz13 等层的砾石共取得 8 个样品,每个样品中随 机抽取100颗砾石,对其中的砾石成分进行鉴定,同时 分别测出每颗砾石的长轴(a),中轴(b)和短轴(c)的 长度,观察砾石的磨圆度及风化程度等,然后进行室内 的统计分析。

2 砾石的砾度与砾态统计分析

2.1 砾石的砾度

对野外数据的整理和计算,所得结果如表 1 所示。 其中平均砾径 \overline{d} 首先通过计算得出各轴的平均砾径 \overline{d}_{a} 、 \overline{d}_{b} 、 \overline{d}_{c} ,再计算等体积砾径而得到,具体计算公式为

$$\overline{d} = \sqrt[3]{d_{\rm a}d_{\rm b}d_{\rm c}}$$

求 \overline{d}_{50} 同求 \overline{d} 的方法一样 ,即

$$\overline{d}_{50} = \sqrt[3]{d_{a50}} \overline{d}_{b50} \overline{d}_{c50}$$

式中 \bar{d}_{a50} 、 \bar{d}_{b50} 和 \bar{d}_{c50} 分别在长、中、短轴的累积频率曲 线上求得。分选系数根据累积频率曲线上的四分位数 (d_{25} 、 d_{75})求得, a 轴的分选系数 $S_a = d_{a75}/d_{a25}$ ^[3-10],求 S_b 和 S_c 的方法与求 S_a 方法相同。由于砾石的轴径频 率分布柱状图可以大致反映每个样品砾石粒度的分布 特征以及分选、均匀、对称、离散等情况因此选择各样 品砾石的 a 轴频率分布柱状图(图 2)进行分析研究。 从 8 个测点的砾石粒度数据分析可以看出,各个测点 平均砾径 \bar{d} 均比中值砾径 \bar{d}_{50} 大,其中样品号 fz7 的差 值最大,达到 1.35 cm,最小的为 fz11,差值为 0.05 cm (表 1)。这表明众值(峰值)靠近砾径较小的砾石,砾

* 收稿日期 2012-05-16 网络出版时间 2013-01-18 15 05 资助项目 国家自然科学基金(No.40971122) 作者简介 张宫梅 硕士研究生 研究方向为第四纪环境 F weil theory invited

作者简介 张宜梅 ,硕士研究生 ,研究方向为第四纪环境 ,E-mail zhangyimei625@126.com 通讯作者 :王建力 ,E-mail :wangjl@ swu.edu.cn 网络出版地址 http://www.cnki.net/kcms/detail/50.1165.N.20130118.1505.201301.48_010.html

径较小的砾石占总砾石的百分比较砾径大的砾石多, 砾径较大的砾石数量虽然少,但是分布较散,在各个测 点的 a 轴柱状图上可以清楚看到这一点。从各样品砾 石 a 轴的柱状分布图(图2)可知,各样品砾石的砾径 分布趋势较为一致,具有较明显的特点,峰值靠前,砾 石 a 轴 60%集中于3~4 cm 以下,砾径较大的砾石数 量虽然少,但分布较散,如样品fz7砾径分布在12~ 31 cm之间只有6个即6%,却相差了19 cm。表1中 各个样品的 a、b、c 轴的分选系数在1.00~3.00 间,分 选较好,说明该区的砾石应为流水搬运而成但是水动 力波动很大。

野外观察和室内砾组数据分析显示在整个西师附 中的沉积剖面中,曾经发生过7次较大的洪水,而对洪 水具有指示意义的是砾石堆积中粒径最大的砾石,它 代表着特大洪水搬运作用的最大限度^[13]。洪水的动 力作用以洪水流速与它所能搬运的最大砾石的粒径呈 6次方法计算,则有

$$D^3 = KV^6 \tag{1}$$

式中 *D* 为卵砾石粒径 ,*K* 为常系数 ,*V* 为洪水流速。 1988 年 ,Knox^[14]对砾石样品的代表性进行了分析 ,发 现随机选取尽可能大的 30 块砾石样品测量后 ,选取平 均粒径最大的 5 块计算其平均值 ,可以推算古洪水的 搬运能力^[13]。利用这一方法 ,将本研究中砾组分析所

		岩性	层号 年代
	500		$\frac{13}{13930 \pm 350}$
			$\frac{12}{20}$ 20 390 ± 430
	100		11
	400		10
Е			9
蒦/c	300		8
间			$\frac{7}{6}$ 22 540 ± 3 440
	200		5
			4
			3
	100		$\frac{2}{-2}$ 24 340 ± 820
	100		1
			$\frac{1}{24}$ 24 640 ± 520
	0		
	基岩		

图1 西师附中柱状剖面图

Fig. 1 The histogram map of Xishi Fuzhong

得的数据进行整理,以平均粒径最大的5块砾石计算 来计算平均粒径均值(表2)。根据宜昌站1954年大 洪水实测水文资料,计算长江宜昌站水位-流量关系

$$Q = 9\ 208.4V^{1.6884} \tag{2}$$

式中 *Q* 为流量 *,V* 为流速。利用砾石砾径平均值 ,根 据(1)式和(2)式可以换算出古洪水流量值。从表 2 中可以看出 ,在 24.3 kaB. P. 至 10 kaB. P. 期间所爆发 的 7 次古洪水流量均比较大 ,其中最大的为 fz7 ,流量 值为 119 690.783 m³ · s⁻¹左右 ,为特大洪水量级。

	表1	江北	砾岩砾	组分析	
TL .		1		.f. T:	1

	Tab. 1 The group analysis of graver of franguer congromerate							cm
层号	$\overline{d}_{\mathrm{a}}$	$\overline{d}_{ m b}$	$\overline{d}_{ m c}$	\overline{d}	\overline{d}_{50}	$\overline{d}_{\mathrm{a}50}$	$\overline{d}_{ ext{b50}}$	$\overline{d}_{ m c50}$
fz1	3.32	2.30	1.52	1.82	1.70	2.91	1.78	0.95
fz3	4.02	2.88	1.94	2.82	1.97	3.33	1.98	1.16
fz4	4.28	3.21	2.24	3.13	1.89	3.18	1.96	1.08
fz5	3.70	2.57	1.63	2.49	1.98	3.33	1.96	1.19
fz7	5.30	3.55	2.53	3.62	2.27	3.81	2.29	1.34
fz9	3.68	2.60	1.67	2.52	1.89	3.18	1.96	1.08
fz11	2.68	1.83	1.10	1.71	1.66	2.72	1.78	0.95
fz13	3.37	2.30	1.45	2.24	1.69	2.93	1.85	0.89

注: 各层样品个数均为100。

2.2 砾石的砾态

江北砾岩砾石的砾态分析包括砾石的风化程度、 扁度、磨圆度、球度等,且各样品的砾态数据也是通过 每个砾石的的 a 轴、b 轴和 c 轴的长度而求得。磨圆 度根据四级分法估计值(0 级为棱角状,1 级为次棱角 状 2 级为次圆状,3 级为圆状)计算^[3],以百分数表 示。风化程度的划分采用四级分法估计值,用目估法 (0 级为未风化,1 级为弱风化 2 级为中等风化 3 级 为强风化)。砾石的扁度 F 计算公式为

$$F = (\overline{d}_{a} + \overline{d}_{b})/2\overline{d}_{c}$$
 (3)

球度 ψ 计算公式为

$$\psi = \sqrt[3]{d_{\rm a}d_{\rm b}d_{\rm c}}/\overline{d_{\rm a}} \tag{4}$$

(3)(4)两式均用平均砾径 \bar{d}_a 、 \bar{d}_b 和 \bar{d}_c 进行计算统计 而得到。

西师附中江北砾岩的砾态分析结果如表 3 所示。 由分析得知,其砾石的风化程度低,各样品多为 1 级, 风化程度较弱,表明该剖面形成之后虽然受到河水的 侵蚀有一定的风化,但是整体并未经历明显的风化作 用。砾石的扁度基本都在 2 以下,只有第 11 层达到了 2.05。砾石的磨圆度较高,在 65% ~ 82% 之间,并且 变化不大,主要为次圆状(2 级)和圆状(3 级),磨圆度 较好。砾态参数 *F/ψ* 介于 2.54 ~ 3.63 之间^[3 89]。

3 江北砾岩的沉积环境

前人的研究表明,河流砾石层的粒度越大则反映 水动力越强。对于特定河流的具体河段而言,不同时 期降水的变化可引起沉积砾石层砾径的变化,因而砾径 具有气候干湿的指示意义。据上述砾石的砾度和砾态 分析 结合本剖面的沉积层序特征来看(图1),西师附 中 剖 面 的 江 北 期 砂、砾 岩 在 24. 3kaB. P. 至 10 kaB. P.^[11-12]期间,总体经历了细→粗→细两个沉积 旋回。fz7 的沉积砾度达到最大,其最大长轴达 30 em,并且该层的分选差,磨圆度较低。这说明当时的 水动力十分强,并反映了 22.5 kaB. P.前后降水强度 较大,形成了较大规模的洪水,但是该层的沉积厚度较 小,说明此次洪水历时较短。具体来看整个剖面从下 至上可分为7个粗→细的沉积旋回。第1旋回(fz1fz2)砾度由粗到细,下部为砾岩层,上部为砂岩风化 物,反映在这段时期,降水由多至少的过程,早期降水 较多,河流带来大量的砾石在此沉积,后气候变得干 燥,砾石胶结,沙粒沉积后胶结成砂岩。第2旋回 (fz3-fz4)为过渡性旋回,砂砾间杂;砾度仍是由粗到 细,下部以砾石为主 表明水动力较强,上部以砂为主, 间有砾石分布,表明水动力不强,但有动荡。第3旋回 (fz5-fz6)砾度由粗到细,下部为砾岩,上部为砂岩,降 水由多至少。第4旋回(fz7-fz8)中下部为砾岩,上部 为砂岩,下部砾岩中含有最大 a 轴为 31 cm 左右的砾 石,表明在此期间水动力较强,且变化动荡。第5旋回 (fz9-fz10)底部为松散砾石层,砾石以细砾为主,上部 黄白、青灰色砂岩,砂粒较细。第6旋回(fz11-fz12)下 部为砾石层,砾石大小以中细砾为主,泥钙质胶结,上

部为砂岩层。第7旋回(fz13 层及上部亚沙土)砾石 与岩屑混杂,砾石以中细砾为主,顶部为沙土。在这7 个粗细旋回的基础上还叠加了更多更小尺度的粗、细 变化(图1),推测这些砾度的变化主要与气候干湿的 频繁波动有关。相对湿润期降水充沛,河流水动力较 强,较大砾径的砾石被洪水带至河漫滩或边滩沉积。 反之相对干旱期降水较少,河流水动力较弱,能被带 至该地沉积的砾石砾径相对较小,许多细粒砂被带至 此地沉积从而在砾岩中形成了许多砂岩或砂砾互层。

表 2	重庆	₹地区 2.4	43 ~ 1	万年间]反映;	洪水的	江北砾	当砾石的砾	径特征
Tał	o. 2	The grav	el size	transp	orted b	y ancient	flood in	Chongqing	area

			0				01 0	
层号 -			砾径/cm		六月 (1)			
	样品1	样品 2	样品 3	样品4	样品 5	平均值	- 洪水流速/(m·s)	加里/(m·s)
fz1	7.24	7.91	8.14	8.38	9.04	8.142	2.853	54 078.171
fz3	8.23	8.24	8.64	9.04	10.03	8.836	2.973	57 942.936
fz4	10.25	11.28	13.21	13.31	15.21	12.652	3.557	78 457.41
fz5	7.24	7.34	7.39	8.14	8.23	7.668	2.769	51 401.289
fz7	15.28	17.28	20.38	21.27	30.12	20.866	4.568	119 690.783
fz9	7.83	7.91	8.23	8.27	12.31	8.91	2.985	58 353.631
fz11	4.68	4.73	5.04	5.23	5.24	4.984	2.232	35 719.384
fz13	7.52	7.56	8.17	8.23	12.62	8.82	2.97	57 865.586

表 3 江北砾岩砾组分析表

. 3	The group	analysis	of gravel	of Jiangbei	conglomerate
	· · · · · · ·				

层号	S_{a}	$S_{ m b}$	$S_{ m c}$	风化程度	扁度 F	磨圆度 ρ∕%	球度ψ	F/ψ
1	1.41	1.66	2.06	2级	1.85	75.23	0.55	3.63
3	1.50	1.53	1.80	1级	1.78	81.82	0.70	2.54
4	1.69	1.96	2.17	1级	1.67	73.19	0.73	2.29
5	1.72	1.40	1.62	1级	1.92	77.26	0.67	2.87
7	1.68	1.93	2.42	1级	1.75	65.19	0.68	2.57
9	1.36	1.39	1.63	1级	1.88	80.11	0.68	2.76
11	1.37	1.64	2.08	1级	2.05	74.68	0.64	3.20
13	1.50	1.70	2.87	1级	1.96	76.53	0.66	2.97

注: 各层样品个数均为100。

整体而言,西师附中江北砾岩剖面的沉积物分选 性好,砾石以方向性差的小砾石为主,堆积砂以中细砂 为主,表明水动力不强,沉积物主要为河漫滩和边滩沉 积,但偶尔出露的大颗粒砾石表明当时的水动力有时 会较强,变化动荡。此外,本剖面7个旋回也反映了在 24.3 kaB. P. 至 10 kaB. P. 期间,嘉陵江曾经爆发了7 次古洪水。其中 22.5 kaB. P. 前后沉积了长轴为 31 cm的砾石,根据推算,此时的古洪水量达到约 119 690.783 m³·s⁻¹,为特大洪水量级,表明当时的 水动力十分强,重庆及其上游地区在该时期降水强度 达到最大,但是该层的厚度较小,推测此次强降水过程 时间较短。第1旋回反映的古洪水流量(54 078.171 m³·s⁻¹)并不大,但此次洪水的期限较长,因此沉积 了较厚的砾石层。其余5个旋回也反映了较高的古洪 水水位,但由于洪水历时较短,堆积砂砾层不厚。

Tab

参考文献:

[1]李春昱. 雅安期与江北期砾石层之生成[J]. 地质论评, 1947(1/2):117-126.

Li C Y. The generation of gravel layers in Ya 'an period and Jiangbei period J]. Geological Review ,1947(1/2) 117-126.

[2] 刘兴诗. 四川盆地第四系[M]. 成都:四川科技出版社, 1983 b7-88.

Liu X S. Quaternary system in Sichuan basin[M]. Chengdu : Sichuan Publishng House of Science & Technology ,1983 '67-88.

[3]陈建成 柏道远,李长安,等. 洞庭盆地中更新世洞庭湖组砾石特征及其意义[J]. 华南地质与矿产 2010(4):16-22.
Chen J C, Bo D Y, Li C A, et al. Statistics of gravel particle size and shape features of middle pleistocene Dongtinghu formation in Dongting basin, and its tectonic and environmental significances[J]. Geology and Mineral Resources of South China 2010(4):16-22.

[4] 周秉根 ,李刚. 黄山第四纪泥砾沉积物的成因分析[J]. 冰

53

川冻土,1992,14(4)360-365.

Zhou B G ,Li G. An analysis of the sediment formation of the Quaternary mudstone in the mount Huangshan[J]. Journal of Glaciology and Geocryology 1992 14(4) 360-365.

[5] 孟庆任, 薜峰. 秦岭商丹带内黑河地区砾岩沉积及其构造 意义[J]. 沉积学报, 1994, 12(3) 38-42.

Meng Q R ,Xu F. Conglomerate sedimentation and its tectonic implication ,Heihe area within Shangdan zone of the Qinling [J]. Acta Sedimentologica Sinica 1994 12(3) 38-42.

[6]周秉根.黄山第四纪泥砾沉积物分形结构特征与沉积环境 分析 J].地理科学,1999,19(1)93-94.

Zhou B G. Analysis on the fractal structure features and sedimentary environment of the boulder clay of the Quaternary in Mt. Huangshan[J]. Scientia Geographica Sinica ,1999 ,19 (1) 93-94.

[7]周秉根,李典友.黄山不同类型砾石特性及成因分析[J]. 安徽师范大学学报:自然科学版 2000 23(1) 57-60.

Zhou B G. An analysis on the characteristics and formation of the different gravels in mountain Huangshan[J]. Journal of Anhui Normal University (Natural Science) 2000 23(1) 57-60.

[8]朱大岗 赵希涛 孟宪刚 等. 念青唐古拉山主峰地区第四纪 砾石层砾组分析[J]. 地质力学学报 2002 & 4) 321-332.

Zhu D G Zhao X T Meng X G et al. Fabric analysis of gravel in Quaternary gravel beds on backbone area of Niqingtanggulashan mountains[J]. Journal of Geomechanics 2002 & (4): 321-332.

[9]韩建恩,余佳,孟庆伟,等. 西藏阿里地区札达盆地第四纪 砾石统计及其意义[J]. 地质通报 2005 24(7) 630-636. Han J E, Yu J, Meng Q W, et al. Analysis of Quaternary gravels in the Zhanda basin Ngari area ,Tibet ,China[J]. Regional Geology of China 2005 24(7) 630-636.

[10]黄培华.黄山山麓第四纪粘土砾石层形成机制和环境的研究 J].地理科学,1994,14(3)211-216.
 Huang P H. A study on the sedimentation mechanism and environments of Quaternary boulder clay deposits at piedment in mount Huangshan, Anhui province[J]. Scientia Geographica

Sinica 1994 14(3) 211-216.

- [11]何多兴. 江北砾岩的成岩时代及其环境条件研究—以重庆 北碚附中剖面为例[J].中国岩溶 2005 24(3) 175-176.
 He D X. Research on the chron and environment of diagenesis for Jiangbei conglomerate taking the Fuzhong profile of Beibei ,Chongqing as an example[J]. Carsologica Sinica , 2005 24(3) 175-176.
- [12]何多兴,谢世友,沈立成,等.江北砾岩沉积特征及形成环 境研究[J].西南师范大学学报:自然科学版,2006,31 (1):144-147.

He D X. Research of sedimental characteristics and diagenetic environment of Jiangbei conglomerate [J]. Journal of Southwest China Normal University (Natural Science Edition) 2006 31(1):144-147.

- [13] 葛兆帅 杨达源. 晚更新世晚期以来的长江上游古洪水记
 灵 J]. 第四纪研究 2004 24(5) 555-560.
 Ge Z S, Yang D Y. The paleoflooding record along the up reaches of the Changjiang river since the late Pleistocene epoch
 [J]. Quaternary Sciences 2004 24(5) 555-560.
- [14] Knox J C. Climatic influence on Upper Mississippi Valley floods[M]//Baker V R ,Kochel R C ,Patton P C. Flood geomorphology. New York :Wiley ,1988 279-300.

Resources , Environment and Ecology in Three Gorges Area

The Gravel Statistics and Sedimentary Environment of Jiangbei Conglomerate in Chongqing

ZHANG Yi-mei $^{1\ 2}$, WANG Jian-li $^{1\ 3}$, ZHONG Jun 4

(1. School of Geographical Sciences, Southwest University, Chongqing 400715; 2. Tongnan Middle School, Tongnan Chongqing

402660 ; 3. Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)

4. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China)

Abstract : The analysis of gravel group of Jiangbei conglomerate and dating shows that Jiangbei conglomerate of Xishi Fuzhong section has experienced two sedimentary spinning back , fine to thick and thick to fine. Concretely speaking , it can be divided into seven sedimentary spinning backs and each spinning back represents a flood period. Based on it more small scale of crude , fine changes , it is speculate that these changes of gravel is caused by frequently fluctuations of climate. According to the research , in Chongqing and upstream area , the ancient flood had been broken out seven times between 24. 3 kaB. P. and 10 kaB. P. Among them in 22. 5 kaB. P. sedimentary which reach 31 cm , according to the calculated. At this time , the ancient flood capacity amounts to about 119 690. 783 m³ · s⁻¹. It shows that the water power was very strong at that time. But the layer is thick , so we speculated that the rainfall took a short time. In particularly , the gravel degree has seven times from thick to fine , so the precipitation may has seven times from more to less in Chongqing and upstream area between 24. 3 kaB. P. and 10 kaB. P. It shows that precipitation intensity changes greatly in this time. Relatively wet period abundant precipitation , the water power is stronger ; the big gravel can be taken to the beach and sedimentary by the flood. Otherwise , relatively dry period less rainfall , the water power is weak , it can only bring small gravel and sedimentary , much fine sand was taken to sedimentary and in formed many sandstone layers.

Key words : Jiangbei conglomerate ; sedimentary environment ; analysis of gravel group ; Chongqing