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Outer Synchronization between Two Complex Dynamical
Networks with Time-varying Delays
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Abstract: In this paper, we study the outer synchronization between the drive network and the response network with time-
varying delays. By employing linear matrix inequalities (LMI) and Lyapunov functional method, some new sufficient con-
ditions ensuring the outer synchronization between two complex networks are obtained. The outer synchronization between

the drive network and the response network is achieved if one of the following conditions is satisfied:1) 0"z (1) <<o<<1,

U, (0 AeM. T .
M., >0,8;, >0, <0,i=2,, N;2)t () <0, () <7, 0<7r<o0,M, >0,8 >0,
AeIl'"M:; —(1—0)8;
U, AweM I —Y, tH"Z,
A’ M, —Y7F —S, w7, |<<0, k=2,++,N. Finally, a numerical example is provided to illustrate the effi-
. H A2, T — L,

ciency of the derived results.

Key words: complex networks; outer synchronization; time-varying delays; Lyapunov functional

FESES:0175 XEkARERD: A NEHES:1672-6693(2013)04- 0059- 07

Introduction

Over the past one decade, dynamical behaviors of complex networks have attracted a great deal of atten-
tion in variety of fields, such as communication networks, food webs, internet, World Wide Web., social net-
works, metabolic networks, power grid networks, biology, physics, mathematics, engineering and so on™' %,
In particular, the synchronization is one of the most significant and interesting dynamical properties of the
complex networks.

Recently, outer synchronization between two coupled complex dynamical networks have attracted more
and more attention. Researches on outer synchronization of networks have the strong importance and potential
applications in our life. For example, in order to know more about the communication of the infectious disea-

ses, such as Mad Cows, AIDS and SARS, between animals and the human beings, it is required two different
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networks to distinguish animals from the human beings; investigating the interactions of protein network and
gene network may disclose evolution process in systems biology'™. These mean that to study the dynamics be-
tween two coupled networks is necessary and important. Li, Sun and Kurths firstly studied the synchronization

"7 They studied the outer synchroniza-

between two complex networks which is called “outer synchronization
tion between two complex dynamical networks having the same coupling structure and the different coupling
strength. Tang et al. investigated the theoretical analysis of synchronization between two complex networks

with nonidentical topological structures™.

By designing effective adaptive controllers, they achieve synchroni-
zation between two complex networks. Both the cases of identical and nonidentical network topological struc-
tures were considered and several useful criteria for synchronization were given. Wu et al. investigated the out-
er synchronization between two networks with different coupling structures and also provided the control law
to achieve outer synchronization based on Barbalat’s lemma. Li et al. considered the synchronization between
two discrete-time networks which have the same connection topologies and derived analytically a sufficient con-

L10]

dition for achieving this outer synchronization On the basis of Lyapunov function approach, Li, et al.

proved that for networks with balanced structure topology, outer synchronization can be asymptotically

" The synchronization problem of complex networks has been

reached by using arbitrary coupling strength’
one of the focus points in many research and application fields. In addition, time delays commonly exist in vari-
ous complex dynamical networks due to the finite information transmission and processing speeds among the
network nodes, and some of time delays cannot be ignored.

Moreover, the delays are frequently varied with time and the elements of each node havethe same time-va-
rying delays. Unfortunately, there are very few results developed in this direction.

Motivated by the above discussions, the objective of this article is to study the outer synchronization be-
tween two complex networks with time-varying coupling delays. Sufficient conditions ensuring the outer syn-
chronization for complex networks associated with time-varying delays are obtained by LMI and Lyapunov
functional method. The rest of this article is organized as follows. We study the drive-response complex dy-
namical network models and some useful preliminaries are given in Section 2. Several outer synchronization cri-
teria are established in Section 3. In Section 4, a numerical example is given to illustrate the theoretical re-

sults.

1 Model and preliminaries

In this paper, we consider the driving network in the form
b =g, () + 2] aTr, (r— () )
and the response network as

dglx;)
Iz

Where 1= 19 29 R Nvl‘,‘ (t) - (I,‘] (f) 9I;2(t)9"'9x,',,(t))T 6 R”vy,' (t) - (y,q (t) 9y,'2(t)9"'9y,'”(t))T E R iS the

state variable of node i and N is the number of the network nodes,x; (t —t(t))=(ay (t—7(t)) sxp (t— (),

y,.<z>=g<y,.<z>>+(ﬂ— )[ym—1,.<z>]ﬂZj’:laUryj(z—f(z)) (2)

i

sy =D, 3y, G—t(W)))=(yy G—7()) , yu t—7()) s eor v, (t— (1)) T, 2(2) is the time-varying delays
with 0=<{r(#)<{r. The matrix H is an arbitrary constant Hurwitz one (a matrix with negative real part eigenval-
ues). g(C+):R"—>R"is a continuously differentiable function which determines the dynamical behavior of the

1 X n

nodes. ¢>>0 is the coupling strength of the network. I'€ R"*" is a constant 0-1 matrix linking coupled varia-
bles. A=(a;)n«x represent the coupling configurations of both networks.

Before stating our main results, we give some denotations,definitions and lemmas.

Let R” denote the n-dimensional Euclidean space and R"*"” be the space of nXm real matrices. P>>0(P<0)
means matrix P is symmetrical and positive (negative) definite, P==0(P<.0) means matrix P is symmetrical
and semi-positive (semi-negative) definite.

Definition 1 Network (1) and network (2) are said to achieve outer synchronization if
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llm H y,(t)il',(t) H :Oal.:lazv"'sN (3)

>+

Definition 2/'* A is said to be an reducible matrix, if there exist a permutation matrix P, such that A=
B C
P P
0O D
If there is no such a matrix P, then, we said A is an irreducible matrix.

Lemma 1 Suppose that A= (A, ) y«y is a real symmetric and irreducible matrix, where A; =0(i7#;), A, =
_ 2;11.19:1‘4’7 . Then, 1) 0 is an eigenvalue of matrix A with multiplicity 1 and associated with eigenvector

(1,1,++,1)T;ii) all the other eigenvalues of A are real-valued and are strictly negative;iii) there exists a or-
thogonal matrix, @= (g, ., ,***»¢y) such that AT, =X,0,,i=1,2,-,N,where A; are the eigenvalues of A.

It is well known that the Linear Matrix Inequality (LMI) is an important tool for studying the behavior of
dynamical systems. We also give the following lemmas on LMI.
0(x) S
S"(x) R(x)
ly on x, is equivalent to R(x)>>0,Q(x) —S(x)R* (x)8" (x)>0.

Lemma 3" Assume that continuous functions a: 2—>R"% ,b: Q—>R"% and UE R""" , where an interval
QCR. Then, for given matrices X € R« % ;Y € R%“*" and Z € R"»"", the following inequality holds

aCp) " X Y—U|[a(w X Y
ZJaT(;x)Ub(;x)d,u <J ’ . dpswhere | = 0.
) 2 Lo Y'—U V/ b Y' 7

Lemma 2% The LMI [ }>O,where Q(x)=0"(2),R(x)=R"(2) ,and S(z)depends affine-

2 Main results

To give some synchronization criteria, we always assume the follows.
(H1) The network (1) is connected in the sense that there are no isolated clusters, that is, A={(a;),x,
is an irreducible matrix, where a; is defined as follows: if there is a connection between node ¢ and node j(j 7

i), then a; =a; =1; otherwise, a; =a; =0 (j7i), and the diagonal elements of matrix A are defined by a; =

— > agei=1.2,N.
Clearly,A is a real symmetric and irreducible matrix. By Lemma 1, we also suppose that
(H2) 2,,i=1,2,+,N are the eigenvalues of A and 0=2A, >1, =A; =+ =A,.
Theorem 1 Let (H1) and (H2) hold and 07 (1) <<o<1. If there exist matrices M;>>0,S,>>0, such that
U, AeM. T
L,-(FT M, —({1—oS,
Where U;=M;H +H" M. +S.;, then the outer synchronization between the drive network (1) and the response

}<O,i2,---,N €9

one (2) is achieved.
Proof Letting e,=y,—x;,i=1,2,+*N, and linearizing the error system around x;, we get
e ()=He,(t)+c2N ja;Te;(t—7(t)),i=1,2,+,N (5)
Equation (5) can be written as
e(t)=He(t)+Te(t—7(t)A" (6)
Let e(t)=C(e, (1) se; (1) s+ sex (D) ERYN and e(t—c(1)) = [e, t— (1)) se, (t—7(1)) s oo yen (t— (1)) ].
According to Lemma 1, there exists a orthogonal matrix @= (¢, ,¢:,**»oy) € R¥ Vsuch that AT@=@A
with A=diag(A,,A;,+**,Ay). Take a nonsingular transform
e(DDP=8()=1(5,(2),0,(2),+,0y (1)) ERY (7

From(7), we have the following matrix equation: 6(t)=H6 (1) + I8 (t—c(t))A, where § (1 — (1)) =
[0: (t—7(2)) 8, (t—7(2)) y+++,On(t—7(t)) ] s that is

8. ()=H5,(t) +cATd,(t—7(t)),i=1,2,++,N (8)

Thus,the outer synchronization between the drive network (1) and the response one (2) is equivalent to
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stability of the zero solution of system (8). Our objective is to given the stability of the origin of the error net-

work (8), i.e., lim |l ¢,(¢) || =0. Note that A; =0 corresponds to the synchronization of the system states (3).

t—> o

Then the drive network (1) and the response network (2) with time-varying delays achieve the outer synchro-
nization if the following N—1 pieces of n-dimensional linear time-varying delayed differential equations are as-

ymptotically stable.
8, () =Hd, (1) + AT, (t—7(1))i=2,3,++,N (9)

In the following, we shall prove that system (9) are asymptotically stable. Select LLyapunov functionals

t

V(B,(t))z&}‘(t)M,a,(t)+J 07 ()80, (w)du (10

t—(1)

The derivative of V(8;(¢)) along the solution of the : th(i=2,+:-,N) equation in system (9) is
V3, (1)) =0T (OM.S, (1) +8T(OM,S, (1) +3T ()80, (1) — (1—¢ (1))T (t—c(1))8.8, (t— (1)) =
ST(OUS, (1) + 25T (DX eMIS, (t—7(1)) — (1 —7 (1)) (t—(1))8,8, (1 — (1)) <6T(DHUS, (1) +

20T (D AeMIS, (1—7(1)) — (1—) 8 (t—7(1))8.0, (t— (1)) =

5, (1) T U, AieM. T 5, (1)
0: (t—7(2)) Aell'™ M, —(1—o)S; ||8:G—c())

0: ()
Letti (O =| =287 M. € R™, h
etting f S LM (o ) e e
2.2 —1 T

8: (1) T U, A, eM.IT 8: (1) U,.+’1”C M.IS, I M, 0
8-t | |2el™ M, — (-8, |8 —c |~ b fiO=
(L Tt iC i o i (L (it 0 *(1*5)5[

2.2 —1 T
a?(;)(U,ﬂ” M?’fsjdr M'ja,m

AcPMIS;'T'" M,
l1—0¢

From the Schur complements (Lemma 2), the LMI (4) is equivalent to U;+ <0.

Thus. we have V(8,(2)) is negative definite. According to Lyapunov stability theory, we know that sys-
tems (9) is asymptotically stable. So, we have the outer synchronization between the drive network (1) and
the response one (2) with time-varying delays. The proof is completed.

Letting M;=M,S,=S8,i=2,3,**,N in Theorem 1., we have

Corollary 1 Let (H1) and (H2) hold and 0<<7 () <Co<1. If there exist two positive-definite matrices M,
$>>0 such that

MH+H" M-+S AneMT
[ AneI'™ M (10‘)S:| ab
then the outer synchronization between the drive network (1) and the response one (2) is achieved.

In Theorem 1, replacing the constant matrices M; by M(z) and S; by § and noting that there is an addition-

al term 8," (OM(1)5,(¢) in V(8,(1)), we easily obtain the follows.
Corollary 2 Let (H1) and (H2) hold and 0<{z (¢)<<6<C1. If there exist a constant >0 and a matrix $§>>

0, such that the following Riccati equation

LEMOIS 'I'" M(p)
1—0

M) +U )+ +el =0 a2

has a positive-definite and symmetric solution M(z)>>0, t€ [¢,,0) , then the outer synchronization between the
drive network (1) and the response one (2) is achieved.

It is noted that the derivative of the time-varying delays isn’t always non-negative in the real world. In the
following, we consider the derivative of the time-varying delays is non-positive situation.

Theorem 2 Let (H1) and (H2) hold. Assume that 7 (1)<C0 and 7(¢)<{z for some 0<{r<Coo. If there exist
common matrices M, >0,S,>0, X,, Y, and Z, such that
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Uk, A k('M}\,I‘ 7Yk, H TZ/‘,
A;\‘CFT Mk 7YE 7Sk TA&C‘FTZ;{ <O (13)
TZ/\,H A ;\,CZ/(,F 7TZ/\,
where
Xk Yk
=) 14
Yi Z;

andU,=MH-+H"M,+X,+Y,+Y;+8, for k/=2,3,-+. N, then the outer synchronization between the drive
network (1) and the response one (2) is achieved.
Proof For the £ th subsystem of (9), define the following Lyapunov functional
V(8 (D)=Vy + Ve +Vys (15)

"0

whereVM=8E(t)Mk6k(t),Vk2=J J ég(p)zkék(;x)d/xdgo,ngsz 87 (18,8, () dpe.

—z(1) t—(1)

The £ th (k=2,--,N) equation in system (9) can be written as
80 (1) = (H + 2,cI 8, (D) —Akcrj 8, ) dp (16)
t—(1)

Thus, the derivative of V,; satisfies

t

Vi =65 (O[M, (H+ Al + (H+ A,cDD™ M, 18, (1) — 287 () A M, T J 8, (o dy

t—t(t)

Define a( » ),0( * ),and U in Lemma 3 as a(u) =38, (1) ,b(w) =:3k () sand U=M,cA I for t(1)<<z. Combi-
ning Lemma 3 and LMI (14), we get

Vi < 8T (O[M, (H+ Ayl + (H+ eI M, + X, 16, (1) + 267 (D) (Y, — AeeM, I J 80 G dy +

t—(1)

t—(t)

J 32(/1)Zk5'k(p)d/z
t—(1)

"t

Moreover V, =7 (1) J c'?f(;l)ZkSk(/z)dp +r(t)32(y)Zk<§k(;1) —JI

t—(

)82‘(#)Zk(§k(y)d/¢ <

t— (1)

t

() — 1) J ST(DZS e ) dp 7 [HS , (8) +2,cl8, (¢ — () 1" Z,[HE , (1) + AT, (t — ()]

i—e(0)
Vi =08 (08,8, () — (1 — ()T (1 — ()88, (t — (1)

0x (1)
0, (t—7(t))
where A.=U,+H"Z,H ,B.=A, M, T —Y,+H"Z\,c.I,C.=—S,+Aic’IT"Z,T.

. . . . A B
Letting £(¢) = [ } € R*, we have the derivative of V, is V, =V, +V,, + V. <" () {BT CJg(t) s

A .
It follows from LLemma 2 that (13) is equivalent to the following inequality: [BT C}<O. Therefore, V, is

negative definite. Using Lyapunov stability theory, we conclude that system (9) is asymptotically stable. This
completes the proof.

In Theorem 2, we choose Lyapunov functionals as follows

Vk((s\k(t)):VM _’_sz_’_ng (17)

0 [ . !
WhereV“ :8E(t)M8k([) 9Vk2 :J J 82‘(/1)Z($k(/l)d/ldsDvag :J 82‘(/1)5(%(/1)(#1, Where k :29"',]\] .
—(1) t+¢

t—t(t)

Then, we easily obtain
Corollary 3 Suppose that the time-varying delay 7 (1)<X0 and z(z) <t for some 0<z<Coo, If there exist
common matrices M=>0,8§>0,M,Y and Z such that
0 AeMI—Y tH'Z
A" M—Y" —S A.cI''Z <0 (18)
“ZH A, cZ —Z
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where
X Y
L/T V/
and Q=MH +H" M+<X +Y+Y"+S8 for k=2,3,::-, N, then the outer synchronization between the drive net-

}>o (19)

work (1) and the response one (2) is achieved.

3 Example

In this section, a numerical example is used to show the effectiveness of the proposed synchronization cri-
teria derived in the Section 3.

Example 1 Consider a 3-nodes the driving network (1) and the responding network (2). The Hurwitz
matrix is H=diag(—6,—7,—8), and the eigenvalues of A are A, =0,A, = —1,1; = —3. The coupling configu-

—2 1 1
rations matrix of both networks with three nodes in this case is given by A=| 1 ~—1 0 |. We assume
1 0o —1
1 0 0
that the matrix I'' is given by '=|0 1 0.
0 0 1

In the following, we analyze the outer synchronization between the drive network (1) and the response one

(2) for two case in different coupling strength parameter ¢ and time-varying delay function z(¢).

Case 1: ¢=0.2 and r(Z)ZB—%e L

In Theorem 1, conditions (H1), (H2) are satisfied and 07 (¢) =ief’<l=a for t==0. Furthermore,

4 4
2 0 0 1 0 0 0.6 0 0 1 0 0O
we can check the LMI (4) with M,=|0 6 O0|,.M;=|0 3 0[,S,.=| 0 0.6 0 [,$=|0 1 0|,U,=
0O 0 8 0 0 4 0 0 0.6 0 0 1
—4.6 0 0 —2 0
0 —15.6 0 ,Us;=| O —9
0 0 —37.6 0 0 —19

From Theorem 1, we see that the drive network (1) and the response network (2) achieve the outer syn-

chronization.

Case 2: ¢=0. 3 and r(t):L

t+8°
In Theorem 2, conditions (H1), (H2) aresatisfied and r (t):—ﬁéo, (1) <0. 75=r1 for t=0. Fur-
2 0 0 3 0 0 1. 327 0 0
thermore, we can check the LMI (13) with M,=|0 6 O0|,M;=|0 8 0 |,S,= 0 1. 327 0 s
0 0 8 0 0 13 0 0 1. 327
1.509 0 0 0.5 0 0 0.3 0 0 0O 0 O
S, = 0 1. 509 0 , X, = 0 0.4 0 |, X; = 0.2 0O 1|,Y, =10 0 0|,Y; =
0 0 1. 509 0 0 0.6 0 0 0.5 0 0 0
[0 0 0 2 0 O 1.5 0 0 — 3. 487 0 0
0 0 0], Z, = |0 2 0|, Z; = 1.5 o 1|, U, = 0 —16. 596 0 ], U, =
10 0 O 0 0 2 0 1.5 0 0 —29. 362
[—5.392 0 0
0 —25. 964 0
o 0 —62. 241
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From Theorem 2, we see that the drive network (1) and the response network (2) achieve the outer syn-

chronization.

In the above example, since time delays are time-varying and we take different matrix parameters, our cri-

teria arefiexible and easily verified by LMI Toolbox in Matlab.

4 Conclusion

In this paper, the outer synchronization between two coupled complex networks with time-varying delays

were considered. We investigated the case that the topology structure are frequently varied with time. Several

theorems with regard to judging the outer synchronization between two complex networks have been obtained.

At last, a numerical example is given to illustrate the theoretical results.
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