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Stability Analysis of Singular Systems with
Interval Time-Varying Delay

JU Pei-jun, LIU Guo-cai
(Dept. of Mathematics and System Science, Taishan University, Tai’an Shandong 271021, China)

Abstract: In this article, we concern with the problem of delay-dependent stability for singular systems with interval time-
varying delay. The purpose of the problem is to design stability criteria such that the singular system is regular, impulse
free and asymptotically stable. Some new delay-dependent stability criteria are derived by taking new Lyapunov-Krasovskii
functional and free weighting matrices. The introduced functional makes use of the information of not only both the lower
and upper bounds of the interval time-varying delay, but also the interval of the two bounds. The proposed stability criteria
are given in terms of linear matrix inequality and it is accordingly easy to check by use of Matlab. Numerical examples are
given to demonstrate that the proposed method can obtain larger allowable delay bounds than the methods in reference,
which illustrates the effectiveness of the approach.
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Introduction

Since time-delay which exists in many applications is often causes instability and poor performance of sys-
tems, considerable attention has been devoted to the stability analysis of time-delay systems during the last
decades, for example [1-207], and the references therein.

Recently, the stability analysis of interval time-varying delay system has been a focused topic of theoretical

[s-8]

and practical importance A typical example of dynamic systems with interval time-varying delays is net-

[3]

worked control systems He et al. investigated H filter design for systems with interval time-varying de-

]

lays™!. Very recently, the stability analysis of system with a delay varying in an interval was studied in [8].

On the other hand, the stability analysis of singular systems, which are known as descriptor systems, im-
plicit systems, generalized state-space systems or semi-state systems, have widely investigated by many re-

searchers™ '™,

The singular model can preserve the structure of practical systems and can better describe a

[16-17]

large class of physical systems than state-space ones . It should be pointed out that when the stability prob-

lem for singular systems is investigated; the regularity and absence of impulses (for continuous systems) and

18] Hence, the stability analysis

causality (for discrete systems) are required to be considered simultaneously
of singular systems with interval time-varying delay is much more complicated than that for state-space ones.
To the best of the authors’ knowledge, no results have been reported in the literature concerning the problem
of stability of the singular systems with interval time-varying delay.

In this paper, we will deal with the problem of stability of a class of singular systems with interval time-
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varying delay. Neither model transformation nor redundant matrix variables will be employed. By employing a
new Lyapunov-Krasovskii functional, which considers not only the lower and upper bounds of the interval
time-varying delay, but also the interval of the two bounds, sufficient conditions are given in the form of linear
matrix inequality (LMI) such that time delay system is asymptotically stable. Compared with some existing
results, our conditions are shown to be less conservative.

Notion Through this paper, the superscripts “T” stand for the transpose of a matrix and the inverse of a
matrix; R” denotes n-dimensional Euclidean space; R"*" denotes the set of all real matrices with m rows and n
columns; P>>0 means that P is positive definite; I is the identity matrix of appropriate dimension; * denotes

the matrix entries implied by symmetry.

1 System description and preliminaries

Consider the following uncertain singular system with interval time-varying delay
Ex(D)=Ax()+Ax(—7())
() =@(0) ,0E [ —1y,0]
where x(z) € R" is the state vector; 7(z) is the time-varying delay satisfying
0<r, <t(D<ty, t(D<p=<l (2)
o € C(L—ry-0],R") is the initial function with the norm || ¢ || = SUp.er—c,,.00 | () |5 E, A and A, are

(D

known matrices of appropriate dimensions, where E may be singular and we assume that rank(E) =r<n.
Definition 1'°'"" 1) The pair (E,A) is said to be regular if det(sE—A) is not identically zero; 2) The
pair (E,A) is said to be impulse-free if deg(det(sE—A))=rank E.

281 1) For some given scalars z,,» 7y and 7p » the singular system (1) is said to be regular and

Definition
impulse free for any time delay z(z) satisfying (2), if the pairs (E,A) is regular and impulse free;2) The sin-
gular system (1) is said to be stable if for any e=>0, there exists a scalar §(e) >0 such that for any compatible

initial conditions ¢(z) satisfying sup |l ¢(¢) || <<0(e), the solution x(z) of the system (1) satisfies || x(2) || <<e
0

S
() =r=(

for 12=0. Furthermore, lim x(¢) =0,

>

Before ending this section, we introduce the following lemmas which are useful in deriving stability criteria
for system (1).

Lemma 1% For any constant matrix WE R, W=W"' >0, scalar Y>>0, and vector function x:[ —7,0]—>R"
such that the following integration is well defined, then

B yJ'r FTOW (de< |: x () ]r |:—W w :l { (1) :|
—y x(t—7y) * —WillaGz—y)

Lemma 2"} Consider the function ¢:R™—R. if ¢ is bounded on [0,0), then ¢(z) is uniformly continu-

ous on [0,00).

Lemma 3"’ (Barbalat’s Lemma) Consider the function ¢:R" >R, if () is uniformly continuous and

Jwgo(s)ds < w, then lim ¢(z) =0.

>0

2 Main results

In this section, we present stability criteria for the singular systems with interval time-varying delays (1).
Now, we have the following main results.

Theorem 1 For some given scalars 7, » 7y and 7, the system (1) is asymptotically stable if there exist
Qll QIZ

some matrices P>0, Q,; >0, Q= { Q
* 29

}>O, 7, >0, Z,>0, S;>0, i=1,2,3, and matrix N of appropri-

ate dimensions such that
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(Qn Q1 Q5 0 Q]
* Qo Dy Oy 0
N=| * * Qo 2y 0 <0 (3
* * * 0
* * * * 055 ]

where 2, = E'PA+A"PE+ NR'A+A'RN*"+Q,, +7, +7Z, —E'S,E—E'S,E+ A'@A, 0Q,, =E"PA. +
NRTA.+A"GA,, Qs =E'S\E, 0, =E'S,E, Q; =Q,, 2., = —2E'S,E+AT®A., Q,;, =E'S{E, Q,, =
E'S,E, Q,,=—Qs 25, =—Q,, —E'S E—E'S.E, 0,=—Q,—E'S,E—E'S.E, Q0:;:=Qy,— (1—1p,)Z,, 6=
T —Tpns O=725, +13S, +6°S;, and RER"™“ 7 is any matrix with full column rank and satisfies ETR =0.

Proof Since rank(E)=r< n, there must exist two invertible matrices G and H &€ R"*" such that
_ L0
EGEH[ } 4)
0 O
. = Z11 le_ e Fn 512 — - — g111 5112
Similar to (4), we define A=GAH=|__ _ |Z\P=G 'PG'=]|__ .S =G S G = . ,
AZ] AZZ_ P21 PZZ SlZl SIZZ
— T e 5211 5212 — T Nn 1 - o 0
S, =G 'S,G '=|_ _ , N=H'N=|__ |, R=G '"R=|_|.
Saor Saa Ny, | (o)

Since 2,,<<0, Q,, >0, Z,>0, Z,>0 and O=%S, +4S, +6°S; >0, we can formulate the following ine-
quality easily, =ET"PA+ATPE+NR"A+ATRN"—E'S,E—E'S, E<0.
Pre-and post-multiplying ¥<C0 by H"' and H, respectively, yields

o N 072 B
U=H'WH=E' PA+A" PE+NR'A+A"RN'—E'S, E—E' S, E=| ' " =9
* Asz@Nle+N21@T Ay,
5

Since ¥, and ¥, are irrelevant to the results of the following discussion, the real expression of these two

variables are omitted here. From (5), it is easy to see that
gTz@Nle+N21(PT A22<O (6)
and thus Aj, is nonsingular. Otherwise, supposing A,; is singular, there must exist a non-zero vector EER" ",

which ensures ng £€=0. And then we can conclude that &' (X;TZE N;Tl —Q—NZIET XZZ)E:O, and this contradicts

(6). So A, is nonsingular. Then, the pair of (E,A) is regular and impulse-free, which implies from Definition
2 that the system (1) is regular and impulse-free.
Next we will show that system (1) is stable. To this end, we define the following Lyapunov-Krasovskii

functional

V)=V (x)+V,(x)+V;(x,) (D

t

where Vi (xz,))=2T () ETPEx(¢), V,(x,) :J[ XT(HQX (s)ds —Q—ﬁ 2 () Z x(s)ds —I—J 2T (s)Z,x(s)ds,
T, t—98

t t—(1)

t t

0 o t
i"‘(ﬁ)ETSlEi(6’)d6+rMJ dsJ i"r(@)ETSin(@)d&er‘j dsJ 2" (E'S,E «
t+s Ty t+s Ty tts

Qu le}
. >0

*

0
Vilx,) =1, J dsJ

() dd, where X" (s) = [2"(s) 2"(G—], 8=ty —7,and Q= {

22

Taking the derivative of V(x,) with respect to ¢ along the trajectory of (1) yields
Vi(z)=22"(OP (1) =2"() (E'"PA+A"PE)x (1) + 22" (DE"PA.x (t—1(1))
V,(z)=X"(0QX(D)—X"(t—7,)QX(t—7,) + 2" (D Z x (1) —
2T G=NZi2G—+ 2" (D Z,x()—A—7 ()" t—()) Zx(t—7(1))
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V.(x) =" (OE" (248, + S, +8'SH)Ex (1) — 1, J #T(HE'S E4 (s)ds —

—t
m

- J FT(OETS,E 7 (s)ds — Jf FT(HETS,E 4 (s)ds

Tty Tty

Use Lemma 1 to obtain

"t . . x (D) "T—E'S,E E'SE x (1)
_‘L',,,J 2T (HETS Ez (s)ds <

—,, x(t—1,) * —E'SSE||x(t—1,)

¢ . . x (1) "[—E'S,E E'S,E x ()
*TMJ TT(HETS,Ex (s)ds <

[V AT(Z‘,*TM) * *ET52E x(t*T;\/[>

t—(1)

’i"‘(.»-)E’I‘ngi(s>ds—aj 2T(HETS,EZ (s)ds <

t—t

_ 5J’ " ET(OETSEd (9)ds = —3[

—ty —7(0) Ty
|: x(t—1,) :|T —E'S,E E'S,E l: x(t—1t,) }_’_ ':;f(t—z'(t)):lT —E'S,E E'S,E ':1‘(Z—2'(Z)):|
x(t—7() * —E'S,E||xCGt—c) x(t—17y) * —ET'S.E|| (t—1y)

Noting that (1), the following holds:*" (DE"OE # (1) =¢"(DATOAL (1), where A=[A A. 0 0 0],
Fo=["® "G 2'G—z7,) 'G—y) 2" Gt—] and O=1,S, + S, +"S;,. Furthermore,
noting ETR=0, we can deduce

0=2x2"WE'R(N"2())=2 (Ax()+Ax(t—z()))"R(N"x(2)) (8

Thus it follows from above, we have V(z, YT () QL) , where Q is defined in (6). One can see that if 2<0,

then V(x,)<0 and
L la@ P —=V0)) <2"(WOE"PEx (1) —V(2(0)) < V(z()) —V(x(0)) =

J’V<1-<s>>ds <A, J | 2(s) || 2ds < 0 (9
0 0
where A\, =1, (ETPE)>0, A, = —2,..(2)>0.

From (9), it is easy to obtain that A, || (&) || 2 + A, jl | 2(s) || 2ds < V(2(0)) . Then 0< || x(p) || ?<<
0

%V(l‘(O)) , 0 <Jr | 2(s) | 2ds < %V(I(O)) . Thus, | x| ? andJr [l z(s) || 2ds are bounded. Using same
1 0 2 0

method, we have that || £(¢) || is bounded. According to Lemma 2 and Lemma 3, we get lim x(¢) =0, accord-

>0

ing to Definition 2, the singular system (1) is stable. This completes the proof.

Remark 1 From the proof process of Theorem 1, the most attractive contribution is that in Theorem 1
we have made the best use of not only the lower bound of the interval time-varying delay, but also the interval
of the upper bound and the lower bound of the time delay. To reduce the conservatism, we employ a new
Lyaponov-Krasovskii functional (7), which is mainly based on the information about z,,,» 7y and 7y —7,,.

Remark 2 1If 7, is zero, we can obtain a stability criteria of system (1) using the corresponding Lyapunov-

Krasovskii functional reduces to

t

t 0 t
V(I,)ZJTT<f)ETPE1‘(t)+J IT(S)QJT(S)dS+J 2T () Zx (s)ds + Z'MJ dsj T (ODETSE 2 (6)do
T t+s

Ty t—(1) M
Similar to the proof of Theorem 1, one can easily derive a less conservative result than some existing ones,

which will be shown through numerical examples in the next section. Due to page limit the result is omitted.

3 Numerical examples

In this section, some examples are provided to demonstrate the effectiveness of our results.
Example 1 Consider the linear time delay system

. —2 0 —1 0
x(t)—li :|x(t)+|: :|I(Z‘T> (10)
0 —0.9 —1 —1
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In this example, we choose R= [0 0]". Tab. 1 lists the maximum allowable upper bound (MAUB) of
the time-varying delay by using Theorem 1 and those in [4-6,8] for different z,,. From the table, one can see
that the derived results in this paper are less conservative than those in [4-6,8].

Example 2 Consider the system (1) with
1 0], 0.5 0 1.1 1
|: j|.r(t)|: :|.r(t)+|: :|x(t—z‘(t)) (1D
0 0 0 —1 0 0.5

We choose R=[0 1]7. When 7,,=0, the upper bounds on the time delay from Theorem 1 are shown in
Tab. 2. For comparison, the table also lists the upper bounds obtained from the criteria in [ 9-15]. It can be
seen that our method is less conservative.

But when the time-delay z(z) is interval delay, the criteria in [9-15] fail to make any decision for this case.

According to Theorem 1, the MAUB on the time-varying delay is shown in Tab. 3 for different z,,.

Tab.1 MAUB of the time-varying delay for different 7,

T 1 2 3 4
(6] 1. 64 2.39 3. 20 4. 06
[4] 1. 74 2.43 3.22 4. 06
[8] 1.873 7 2.504 9 3.259 1 4.074 4
[5] 1. 804 3 2.521 3 3.3311 4.188 0
Theorem 1 4.472 1 4.472 1 4.472 1 4.472 1

Tab.2 Comparison of MAUB using different methods (z,, =0)

Methods [10] [11] [12] [13,14]
MAUB 0.556 7 0.870 8 0.909 1 0. 968 0
Methods [9] [15] Theorem 1

MAUB 1.042 3 1. 066 0 1. 066 0

Tab.3 MAUB of the time-varying delay for different z,, using Theorem 1

T 0 0.5 0.8 1
MAUB 1 1.066 0 1. 066 0 1.066 0 1.066 0
MAUB 2 1.020 4 1.038 0 1.051 6 1.062 2

where MAUB 1 : 7, =0, MAUB 2:7,=0.5

4 Conclusions

We have addressed the stability of singular systems with interval time-varying delay. Sufficient conditions
are given in terms of strict LMI by employing a new Lyapunov-Krasovskii functional. The functional is based
on not only the lower and upper bounds of time-varying, but also their interval. Neither model transformation
nor bounding technique for some cross terms are introduced to the paper. Examples show the advantages of the
theoretic results obtained, and show that our results are much less conservative than some existing results in

the literature.
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