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Abstract: In this paper, we investigate a generalized periodic nonlinearly dispersive wave equation by using the classical
mathematical techniques. The local well-posedness for the equation is established by using the Kato’s semigroup theory.
Under suitable assumptions, on initial value, a precise blowup scenario (That is solution in a finite time if and only if
limA §‘up{sg[§)\ Yu,(t,z) |} =40, )and a blow-up result to the equation are presented(That is a sufficient condition of blow-
‘ =

up).
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Introduction

Hu and Yin', and Yin™ investigate the following equation
U, — e T 20u, +3uu, =y Qu,u,, +uu..,) (D
where @ is nonnegative number and ¥ is arbitrary real number. It is shown in [1,2] that Eq. (1) has solita-
ry wave solutions and blow-up solutions for nonperiodic case and also solutions which blow up in finite time for
periodic case.

If y =0, Eq. (1) becomes the famous BBM equation modelling the motion of internal gravity waves in
shallow channel™ . Some results related to the equation can be found in [4-5]. It is worthwhile to mention that
the equation is not integrality and its solitary waves are not solitons-.

If ¥ =1 in Eq. (1), the well-known Camassa-Holm equation, which models the unidirectional propagation
of shallow water waves over a flat bottom, is found. Here, u(z,x) represents the free surface above a flat bot-
tom and @ is a nonnegative parameter related to the critical shallow water speed™™. As a model to describe the
shallow water motion, the Camassa-Holm equation posses a bi-Hamiltonian structure and in finite conservation

lawst™® Lol

and is completely integrable Recently, some significant results of dynamical behaviors have been
obtained for the Cauchy problem of the Camassa-Holm equation, the reader is referred to [10-127] and the ref-
erences therein.

If ® =0 and yE R, Eq. (1) changes into the rod equation derived by Dai'** recently. which describes finite-
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length and small amplitude radial deformation waves in thin cylindrical compressible hyperelastic rods-*). The
first investigation of the Cauchy problem of the rod equation for nonperiodic case was done by Constantin and
Strauss''!, the precise blow-up scenario, some blow-up results of strong solution and the stability of a class of
solitary waves to the rod equation are presented. Yin"'™ discusses the rod equation for periodic case and gives
some interesting blow-up results.
We consider the Cauchy problem of the following periodic nonlinearly dispersive wave equation
U~ Uy T 20u, Fauu, +Bu. =y Qu.u.. tuu,.),.t>0,rER
u(0,2)=u,(x),x€R 2)
u(t, o+ =ult,x2),t>0,zER
where @, a and 8 are nonnegative fixed constants, 7 is fixed arbitrary constant. Obviously, Eq. (2) reduces to
Eq. (1) if we define a=3 and 8=0. Actually, Wu and Yin"'" consider a nonlinearly dissipative Camassa-Holm
equation which includes a nonlinearly dissipative term L(u), where L is a differential operator. Thus, we can

regard the term fu,, as a dissipative term.
Because of the term Bu,., Eq. (2) does not admit conservation laws in works [1-27], E(u) :J (u* + u®)dax.
S
Several estimates are established to prove a blow-up solution. More precisely, we establish the local well-pos-

edness of strong solutions for Eq. (2) subject to initial value u, € H" (S) ,r>% with Szg(the circle of unit

length) and give a precise blow-up scenario which is different from that in [1]. Under suitable assumptions on
the initial value u, . relying on the classical mathematical techniques, a sufficient condition about blow-up solu-

tions is found. The results obtained in this paper improve considerably those in previous workst '™,

1 Local well-posedness

In this section, we establish the local well-posedness for the Cauchy problem (2) in H (S) ,r>%.

We denote by * the convolution. Note that if G(x) : :COSh;z;;h[(ﬁj/;)l/Z) , where [ ] stands for the inte-

ger part of x€R, then (1—9%) ' f=G * f for all f€L*(R) and G * (u—u,,) =u. Using this identity, equa-

tion (2) is written as

u, +vyuu, +3,G % [%’uz JF%(MI )+ 20u+tPu,=0,t>>0,rER

w04 2) =y () )
ult,x+ D =ult.x)
which is equivalent to
v Truy, +27yu, +20u, +pu,, +(@a—3uu,=0,t>0,2ER
y(0,2)=u,(x) —u... (), xER (4)

y(t,f):y(t91+1)9t>09I6R
Theorem 1 Given u, € H' (S) (r>%) , there exists a maximal time T=T(a,b,7,®,u,) and a unique solu-

tion u to problem (2), such that
u=uC* ,u)€CL0.T);H (SH)NC (L0, T); H ' (S)) (5
Proof The proof of Theorem 1 can be finished by using the Kato’s semigroup theory (see [1] or [2]).

Here, we omit the detailed proof.

2 Blow-up solutions

Firstly, we give several useful lemmas.
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Lemma 1 Let s}% and u(z,x) be the corresponding solution of equation (3) with initial data u,(x) €

H"(S). It holds that if ¢&€ (0,r—1], there is a constant ¢ depending only on ¢ such that

jsmwuqu <Av-lu0>2d1-+cj‘< Uy e Dl 2+ el 2 ds 6
S S 0

Proof The proof of Lemma 1 can be finished by slightly modifying that of Lemma 4. 6 in [18]. Here, we
omit the detailed proof.

Lemma 2 Given u, € H (S) ,r>%, the solution u( * ,u,) of problem (2) blows up in finite time T< -+

if and only if lim sup{sgph’m (t,x) |} =+oo,
AT €S

Proof Applying (6) with g=»r—1,we have

t
el e < o [ +¢ JO< v, I + DTl s +

H u H %{"(s> )ds < H Uo H %{'(9 +c Jo( H Yu, H L7(S) + D H u H ?{’<s> ds 7

It follows from (7) and the Gronwall’s inequality that

o ll 3y < o |l 3o eXp(CJO( |y, | sy + l)ds) (8)

If there is a constant M>0 such that | yu, || 1»<<M on (0,T],then | u | % does not blow up. It com-
pletes the proof of Theorem 4.

Remark 1 We use the technique differed from that in [1] to complete the proof of Lemma 2, it improves
considerably the result obtained in [1].

Lemma 3 Let «€ H?(S) and T>>0 be the maximal existence time of the solution «(¢,x) to problem (3).
Then it holds (I)J “(t’f)dI:J M()(I)dI:J y(t»x)dI:J yo(I)dI; (i) H u H %4%5) < H Ug H %—ll(s‘) 6231'_
S S S S

Proof The proof of (i) is similar to that of Lemma 6 in [2], so we omit it.
Multiplying u to both sides of equation (2) and integrating by parts, we get
1d
2 dt

which yields H u H %{1<5>< H Up H s e" 10

J (u? Jruf)dI:,@J ufdrgﬂj (W + u?)H)dx (€2D)

It finishes the proof.
Lemma 47 Assume that a differential function y(z) satisfies
V<—Cy' (O+K (1D

with constants C, K>>0. If the initial datum y(0)=y,<— /g , then the solutions to (11) goes to —o in fi-

nite time.
Next, we give the blow-up result.
Theorem 2 Assume that uy € H'(S),s>>3, and || u, || 42 720.

(DOIf O<7<% is such that

' 2| 2 2 | p : —2 1 ;
| rutide <28l Wi — J2\E |1 4 30LaZDCED oy g, o

4(e—1)
1 7
cosh =——1
_ 2 I
12(1.)’)’“‘3‘87 Z(etll) H Uy | ;Il ea,?]
Sil’ll’l? ¢

then the corresponding solution to equation (2) blows up infinite time.
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DI %<7<a is such that J yui.dxr < 28 |y | 20 e®" —
S
1 T
N cosh — —1
PN E g g 4 A DD g0 | 1207 + 37 — et Ly, |5 e
312 D . hl 2(e— 1)
sin
2
then the corresponding solution to equation (2) blows up infinite time.
GiDIf y>>a or y<<0 is such that J yul. dx < 281 u, || 3" —
S
cosh L—1 :
2|5 LT 3y(y—a)(et+1) 6 6T ) T2 e+1 5 AT
312 H Uo H et S(e—1) X H Uo H et 12w7+3ﬁ7 ] 1 2(e—1) H Uy H ot e
sinh >

then the corresponding solution to equation (2) blows up infinite time.
Proof Let T>>0 be the maximal time of existence of the solution u to equation (2) with the initial data

uy. Applying yu’9, to both sides of equation (2) and integrating by parts. we get
pplying q g g by p g

dj Yul = SLJ uﬁl.d1'+3‘8J yuldx + 3 MJ wiutdx + GLDYJ wludx —
dz 2 Js 2 S S
3[ uiG*(“‘ Z”y rp L Z—O—Zd)yu—l—ﬁyul)dx (12)
S
3 4 % 2 %
Due to Usul dx ‘ < (Jsul dI) (Jsul dx)
2 2
thus j wlde = =3 > =5 5
s J w’dr H u H o'
s

Therefore, we obtain

ddtJ yul <— MJ uf.u2d1+6d))’J wiude —
s

5 ZT(J.S)’uf.dx)er%)’J yuldr+3 5

2 uo [l 5 e
BJ-SufG*((a 2}/)7 2+}/ w’: + 2ayu + Bru, ) (13)

Next, we divide into three cases to prove the theorem.

(i)0<7<%. From case (i) of Theorem 2,we know that Y(a—37)=0 and G * (w_%)}/u)jEO Thanks

to Holger’s inequality and Yong's inequality, we have

J wiutde | <
s

J e ae| <

U ulG % udx | <
S

,_,w' 2 gy = e+1 I et1 4y BT
Hmujgﬁx\ggjﬁwum{\ggjinnHe b

HN, whdr= [y /e+1|mee (15)
HGXMM wide< /e+1 Ll in < /e+lumee (16)

and

. . cosh—f
U ufG * ubl.dx < H G * u, | "XJ ufdx S / ‘ u H ! \
S S ilnh
1
cosh ——1
2 ety | g e an
. 2(e—1)
Slnh?

Using equations(14) ~(17) and equation (13), it yields
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dj 3 3 J 3 28T z 3 i 2 28T
al ., S _ , g B L Q28
dZ Syuld‘1 ~ 2 H o H %_11 62,31 ( Syu,l d-T +B H Uo ‘ € ) + 2 H Uo H H' € +
=2 (et D cosh 3 — 1 T1
a2V | wy | 4 €™ + | 126y + 387 ° o [ 50 e (18)
4 (e 1 2(e—1)
sinh —
2
Setting m(t) :J yulde — B | uy || 31 e*”
S
37a—2P e+ D théfl 1
and K= ﬁquWM+7“ rie Iy | 4 e 4 | 128y + 38y y [
4(e— 1) inh 2(e—1)
sinh —
2
We have S 3t K (19)
de 2 1l wo I 5 ®"
. 2K
From Lemma 4, if m(0)<— 3 I wo || '€, then there exists T such that lim, s+ m (1) = —o0. Apply-
ing Theorem 2, the solution u blows up in finite time.
(i) — <}’<a From case (ii) of Theorem 2, we have y(3y—a)=0 and G * Wuj —=0. Using equa-

tions (14)~(17) and equation (13), it yields

2 2
& e s g ([ el i) 3 e 4 AT DEEED |y g e

deJs 20w | 3 € 8Ce— 1)
1
cosh — —1
126y 4 38y ——2 et |y, | fp e (20)
0h 2(e—1)
Sin -
Setting m () :J yuldxr + B uy || 51 e*”
S
@ 37¢ (e + 1) cosh 5 — 1
and K= || y, || 3y et 4 2X24 V)€ | wo Il 4 " 4| 12wy 4 3By £ [ o [ 30"
8(e—1) h 1 2(e—1)
Sin —_—
2
d 3 ,
el <*—,, 2
We have dtm(f)\ 2 H o H ?_11 ez'ﬂ‘ m ([)+K (21)

Similar to the proof in case (i), we derive that the corresponding solution will blow up in finite time.

(iii) y>>a or y<<0O,note that (a_27)7<0
Using equations (14)~(17) and equation (13), it yields
S e < S ([ el @) 4 3 a4 AT DD g o
dt)s 20 wo |l 3 € s ID)
1
cosh ——1
120 | v |+38 ]y | —2 et Ly e (22)
sinh L 2(e—1)
) 2
Setting m(t) :J yuldx + 8 |y |l 41 27
coshi—l
) _ 3 2 e 3YCa—y) (et 1) o T } 2 et1 3| T
and K 5 | o || 3 e+ Se—1) [ uo || 41 e 4| 120| ¥ 438] 7| — 5e—1) | wo |l 3e
sinh —
2
We have im(z‘)<*;m2(z‘)+f< (23)
de 2 H Uo H et
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Similar to the proof in case (i), we conclude that the corresponding solution of equation (3) will blow up

in finite time. It completes the proof of Theorem 2.

Remark 2 Theorems 2 improve considerably recent results in [1, 17].
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