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Uniqueness of Entire Functions Sharing a Polynomial

WU Chun
(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)

Abstract: In this paper, we study the uniqueness of entire functions sharing a nonzero polynomials, and prove that if f(2)
and g(z) be two transcendental entire functions, and let n,% and / be three positive integers satisfying 5/>4n+5k+7. I
[L(AHI® and [L(g)]* share P IM, where P is a nonzero polynomial with deg P<{5, then f=21, e’ ? +¢, g=2,e 9 4,

or f and g satisfy the algebraic equation R( f, g) =0, where Q(2) = JAp(z)dz . A1sA2.A and ¢ are constants such that
0

A" (nA)*=—1, and R(w, sw;) =L(w,) — L(w,). Moreover, we also obtain the results that [L(f)]* and [L(g)]*®
share the fixed point IM or CM.
Key words: uniqueness; entire functions; sharing a polynomial; dierential polynomial

FEDES:0174.5 XEARER A NEHS:1672-6693(2013)04- 0090- 08

1 Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We will use
the standard notations of Nevanlinna's value distribution theory such as T(r, /), NG, ) ,N(r,f) »,m(r, ) and

so on, as explained in Hayman"", Yang' and Yi and Yang™-.

.. C 1 .
Let a be a finite complex number, and £ be a positive integer. We denote by N, (“Ta) the counting

A
function for zeros of f—a with multiplicity <{k,and by Ny (r,%a) the corresponding one for which multi-

7

plicity is not counted. Let N, (r,fi) be the counting function for zeros of f—a with multiplicity at least £
—a

z|

and NM (r’f%aj the corresponding one for which multiplicity is not counted. Set N, [T’f%aj =
1 -~ 1 -~ 1
(r,ﬁj+N<z(r,fTa)+"'+N<k(r,ﬁ).

7N(f’f% Ny V’f%
We define @(a. £)=1—lim L4 and 8, (a» f)=1—lim a’

r>=o T(Vﬂ ) r=o T(rvf)

Let f and g be two non-constant meromorphic functions, a be a finite complex number. The definitions of

f»g sharing the value a CM (or IM), NL (r,]%aj . N, (r,%j and N,;;;( [héj. We refer the reader to [ 3-5 .

In [6], Fang got the following results.
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Theorem A Let f and g be two non-constant entire functions, and let n,% be two positive integers with
n>2k+4. If (f")® and (g")® share 1 CM, then either f(2)=c,e",g(z)=c,e ©, where ¢, ,c, and ¢ are three
constants satisfying (—1)* (¢,¢,)" (ne)* =1 or f=tg for a constant ¢ such that " =1.

Theorem B Let f and g be two non-constant entire functions, and let n,% be two positive integers with
n>2k+8. I (f"(f—1))% and (g"(g—1))* share 1 CM , then f=g.

In 2008, J. F. Chen, X. Y. Zhang'™ improved the above result and obtained the following result.

Theorem C Let f and g be two non-constant entire functions, and let n,% be two positive integers with
n>5k+7. If (f")® and (g")® share 1 IM, then either f(2)=c,e", g(2) =c,e “, where ¢, ,¢, and ¢ are three
constants satisfying (—1)* (¢;¢;)" (ne)* =1 or f=tg for a constant ¢ such that t"=1.

Theorem D Let f and g be two non-constant entire functions, and let n,% be two positive integers with
n>5k+13. I (f"(f—1))"® and (g"(g—1))* share 1 IM , then f=g.

In 2008, X.Y. Zhang, J. F. Chen and W. C. Lin"* extended the above result by proving the following re-
sult.

Theorem E  Let f and g be two entire functions; let n,m and % be three positive integers with n=>3m+
2k+5, and let P(2)=a,2" ta, 12" '+++a z+a, or P(x)=C, where ay7#0sa,s***sa,_1sa, 70, CF0 are
complex constants. If [ f"P(f)]* and [g"P (g)]* share 1 CM, then either f(2)=2X,e*, g(2) =21 *,where
A2z A are three constants satisfying (—1)* (A,4,)" (nA)*C?* =1, or f(2) and g(z) satisfy the algebraic equa-
tion R(f,g) =0, where R(w, ,w,) =w| p(w;) —w} p(w;).

In this paper we always use L(z) denoting a arbitrary polynomial of degree n, i. e.

L(x)=a,z"ta, 2" '+t +a,=a, (z—c)1 (z—c)) 2 (z—c )b (D
where ¢, (i=0,1,**,n),a,70 and ¢;(j=1,2,++,5) are finite complex number constants, and c,c;,***,c, are all
the distinct zeros of L(2),l,,l;.***,l,,s,n are all positive integers satisfying

L+, ++1,=n,and let I=max{l, Lyl } 2)

Corresponding to the above results, some authors considered the uniqueness problems of entire functions
that have fixed points, see M. L. Fang and H. Qiu*!, W. C. Lin and H. X. Yi"", J. Dou, X. G. Qi and L. Z.
Yangt'!.

In this paper, we consider the existence of solutions of [L(f)]"® — P and the corresponding uniqueness
theorems, and we obtain the following results which generalize the above theorems.

Theorem 1 Let f be a transcendental entire function. When n>>%+s, then [L(f)]* =P has infinitely
many solutions, where P70 is a polynomial.

Remark 1 It is easy to see that a polynomial Q(z) — P (%) has exactly max{m,n} solutions (counting mul-
tiplicities) , where deg Q=m .,deg P=n, but a transcendental entire function may have no solution. For exam-
ple, let f(z)=¢"" +P(2), then function f(2) —P(z) has no any solution, where a(2) is an entire function.

Theorem 2 f(z) and g(2) be two transcendental entire functions, and let n,% and [/ be three positive inte-
gers satisfying 5/>>4n+5k+7. If [L(H]? and [L(g)]*® share P IM, where P is a nonzero polynomial with
deg P<C5, then f=1,¢%% +c,g=21,e ¥ +c¢, or f and g satisfy the algebraic equation R(f,g)=0, where

Q(2) :sz(z)dz, A1 sAs sA and ¢ are constants such that (A;2,)" (nd)*=—1, and R(w; sw,) =L(w;) —L(w,).

Remark 2 When /[=n,/=n—1, respectively, and c=0,P(2)=1, from Theorem 2 we can easily get The-
orem C,D.

Corollary 1 Let f(2) and g(2) be two transcendental entire functions, and let n,% and [ be three positive
integers satisfying 5/>>4n+5k+7. If [L(]* and [L(g)]* have the same fixed points ignoring multiplici-
ties, then f=2A, &’ +c.g=2A, e +¢, or f and g satisfy the algebraic equation R(f,g)=0, where 1, ,4,,A and
¢ are constants, satisfying 4 (1,;4;)" (A)*=—1, and R(w, »w,) =L(w,) —L(w,).

Theorem 3 Let f(2) and g(z) be two transcendental entire functions, and let n,% and / be three positive
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integers satisfying l>%+k+2. If [L(HI® and [L(g)]* share P CM, where P is a nonzero polynomial

with deg P<{5, then f=21,e% +c¢,g=21,e7 9 +¢, or f and g satisfy the algebraic equation R(f,g)=0,

where Q(2) = le(z)dz, A1sAs»A and ¢ are constants such that (3;4,)" (nA)*=—1, and R(w; yw,) =L(w;) —L(w,).
0

Remark 3 When /=n,c=0 and P(2) =1, from Theorem 3 we can easily get Theorem A; When /=n—1,
l=n—m, respectively, and ¢=0,P(2)=1, Theorem 3 improves Theorem B,E.

Corollary 2 Let f(2) and g(2) be two transcendental entire functions, and let n,% and [ be three positive
integers satisfying Z>%+k+2. HLL(HT® and [L(g)]? have the same fixed points counting multiplicities,

then f:/‘tleva +e.g=2, e = +c, or f and g satisfy the algebraic equation R(f,g)=0, where A,,4;, A and ¢
are constants, satisfying 4 (A;A,)" (W) =—1, and R(w; yw;) =L(w;) —L(w,).
Remark 4 If L(H)=L(g), we obtain a,f"+a,  f* '+ +a f=a,g" +a, 1 g" "+ +ag.
S

Let h==-. If h is a constant, then substituting f= gh into above equation we deduce a,g” (h" —1) +
g

a1 g (P —=1) 4+ +a,g(h—1)=0,which implies h*=1,d=(n,**+sn—1i,**,1),a, ;70 for some i=0,1,
-, n—1. Thus f=tg for a constant ¢ such that #/=1. If & is not a constant, then we know by above equation
that f and g satisfy the algebraic equation R(f,g)=0, where R(w, »w;) =L (w;) —L(w;).

Remark 5 Moreover, let L(z) is a generic polynomial of degree at least 5. Then from the equation L(f)
=L(g), one can conclude that f=g and no other nonconstant meromorphic solutions f and g. In [12], Yang-

Hua exhibits some classes of such polynomials. And some related definitions and results, we refer the reader

to [13-14].
2 Some lemmas

Lemma 1" Let f(2) be a nonconstant meromorphic function and let a; (2) sa,(2) be two meromorphic
functions such that T(r,a,) =SG, £)(G=1,2). Then T(r, /)=N (r,f)JrN(r,f j+N(r,f )+S(r,f)

Lemma 27 Let f(2) be a non-constant meromorphic function, let k(=1) be a positive integer and let ¢
(#0,00) be a small function of f. Then

T<r,f><N(r,f>+N(r,f)+N(r,f<kL¢j—N j—i—S(r,f) (3)

(” 1
Lemma 3“0 Let a,(#%0),a, |s***sa, be constants, and let f be a nonconstant meromorphic function,
then T(rya, f"+ta, 1 f* '+ "da f+a)=nT(r, ).
Lemma 4" Let f(z) be a non-constant meromorphic function, s,% be two positive integers. Then

1

N, (r,fu)j<k1\7(r )+ Ny (r, )+S(r,f)

/

Clearly vﬁ(raﬁ) :Nl (r’ﬁ)'

Lemma 5" Let f(2) be a nonconstant entire function, n.# a positive integer, and let ¢ be a nonzero fi-

nite complex number. Then T (r, f)<N[r, f)—FN(ryfmlicj*N (7’,ﬁ)+5(7’,f")<l\fﬁl (raifj-i—

N(raﬁjij\]o(ry 1 j+S<r9f)v Where I\fo(r’

points such that f*"” =0 but f(f* —c)#0.

) is the counting function which only counts those

1
f(k+1)

Lemma 6 Let f(2) be a nonconstant meromorphic function, and let £ be a positive integer. Suppose

that f* 320, then N(r,f},))<}> N(r,f)JrN(r, j+S(va)

J
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Lemma 7" Let f,g share (1,0). Then i) N, 1(r,g_1j<N(r,f)+N(r, }fj No(raf)-ﬁ—S(r,f) si)

Ng;>l(r’f 1)<N(V,g)+N(r, ;j No(r,g)+5(r,g

Lemma 8 Let f and g be two non-constant entire functions, % be a positive integer. If f* and g® share

a nonzero polynomial p(z) IM, and if A=68,,(0,g) +68,:,(0, f)+38,:.C0, f)+28+,(0,g)>4,then #:

f(/\)ip
(k) J—
MM, where a,b are two constants.
g —p
Proof Let
205) (B
F=L" =4 o5
P P
and let
o F”i 2F o (wa 2G’
h_[F F—l] [G G—J (52
Clearly m(r,h)=S(r, f)+S(r,g). Since f* —p and g — p share 0 IM, a simple computation on local ex-
pansions shows that A(z,) =0, if 2, is a common simple zero of f* —p and g —p. Next we consider two ca-
ses: hZZ0 and h=0.
If %20, then
N (r,Fl j N, (r,Gl 1)<N(r, j+()<1><N<r,h>+5(r,f>+5(; .0 (6)

Let 2, & {z: p(2)=0} be a common simple zero of f* —p and g — p. Then it follows from (4) that z, is
a common simple zero of F—1 and G—1, by calculating we get h(z,)=0.
Pw 2F
F F—1

Let 21 € {z:p(2)=0} be a simple pole of F, then by calculating we see that == is analytic at z,.

('w// 2 G 4
G G—

the poles of h come from those common zeros of F—1 and G—1 such that the multiplicity of each such zero of

Similarly, if 2, € {z:p(z) =0} be a simple pole of G,we see that =~ is analytic at z,. Thus, we see that

F—1 is different from that of the same zero of G—1, those zeros of F’ that are not the zeros of F(F—1), those
zeros of G’ that are not the zeros of G(G—1), those zeros of F with their multiplicities=>2, those zeros of G

with their multiplicities==2, and each point is counted only once. Therefore,
N(r,h)<N<Z(r, j+N(7(79 ‘)+N0(7‘9 j+No(ra a/j+N1( F1_1)+N14(F9C%1j+o(10g V) (7)

Suppose that z, & {z:p(2) =0} is a zero of F with its multiplicity z==k+2, then it follows from (4) that z, is a
zero of F with its multiplicity r—%#—1=>1. Thus from (4) and Lemma 2 we get

T(r,g)gN(r,é)JrN(r,éj—N( )+S(r,f)<7\]ﬁu[r, )+N(rq(11 1)—
No(h j+0(logr)+S(r,f)<NkH(r, )+N(r,(]1 lj No(r, j+S(r,f) (8)

Since

I 1
N(V&ﬁ) Nll(reG )+N(7(7’3F j_’_N(}\l(”F 1] (9)
Thus we deduce from (4)~(9) that

T(T,g)<Nk\1(7'9 )“*N(z(?" j+N<2(r, ,)+No(?’y )+N(7(7’F1 1)+
N,(r,ﬁﬁﬁ,( - )+N< l(r,F j+s<r,f>+s<r,g> (10)

From the definition of N, (r,%j , we see that N, (ry )JrN(z(r,F jJrN(g(r, ;‘j N<Z(r,%)<l\7(r7%).
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The above inequality and Lemma 6 give

1 1 1
I RV R
N(Va;‘j No(r, )+N(2(V’%j S(r,f)<N(r, )+S(T’f) (11)

From (4) and Lemma 4 we obtain

N (g )N ) Ny J N ()N st
7( f(,)j+0(log r)+s<r,f><Nm(r,f)+s<r,f> (12)
Similarly
N (r,Gl )<NH1(7, )+S(r,g> (13)
From (10)~(13), Lemma 4 and Lemma 7 we get

T(Vy )<Nﬁ+l(r,gj+]\]<7(r, )JFN(?(VW xj+N(7’v j+N/ 1(7v;j+

Nk{l(r’ j+N(r9(l) No(r’ j+S(raf)+S(r’g)<

Nw(r,gj+N;H[r,fj+Nm(r,f)+2NM(r,;j OClog M +S(r. H+S(r )<

NH;(r, )_)+N;+2(7"7 f)+NA+1(r,f)+2Nk 1(7‘9 rj+S(ryf)+S(79g <14)

Without loss of generality, we suppose that there exists a set I with infinite measure such that T'(r, /)T (r,
g) for r& 1. Hence
Trog)<A{[1—04:0,2) J+[1—8:20, HIH+[1—8, 0, O]+
2[1—8,1C0,g) ] +e}) TGrog)+SGr,g) (15)
for r&€ I and 0<e<{A—4, that is {A—4—¢} T(r,g)<<S(r,g). i.e. ,A—4<0, which is a contradiction to our
hypotheses A>>4,
Hence, we get h=0. Therefore by (5), we have % sz/li%ﬂ_(}zg/l'
P _bgP+@—bp
fP=p  gh—

,where a (#0) and b

By integrating two sides of the above equality, we obtain

are constants. The proof of the Lemma is completed.

Lemma 9 Let f and g be two non-constant entire functions,# be a positive integer. If f* and g share a

p  bgP+(a—b)p
f‘(k) —p - m —p

nonzero polynomial p(z) CM, and if A=0,,,(0,g)+8,:(0, f)>1,then

, where a,b

are two constants.

Proof Since f* and g share the value p(2) CM, we have N, (r,%j:]\h (r,ﬁ) =0. Proceeding

as in the proof of Lemma 8, we obtain conclusion of Lemma 9.

By using the main idea is from [11,18], we easily obtain the following lemma.

Lemma 10 Let f and g be two non-constant entire functions, and let P (2) %0 be a polynomial. If
LI® [g"1® =p* and deg p<<5, then f=b,e?,g=be 2, where b, ,b, ,b are three constants satisfying (b, 5,)" (nb)*

=—1, Q is a polynomial satisfying Q :J;p(rj) dy.

3 Proof of theorems

3.1 Proof of theorem 1
Because f is a transcendental entire, we get T(r,p)=0(T(r, f)). Suppose that z, & {z: p(2) =0} is a zero
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f I:L(f):l(/e)
P/

of L(f) with its multiplicity [=k+2, then z, is a zero o with its multiplicity /—%,—1=>1. From

Lemma 2 and Lemma 3, we have

. . . 1 1 1 .
_ <N[r,- L S S DU (S =
W TG ) T<r,1,<f>>+s<r,f>\N(r,L(f)j+N(r,L (f.)(,_pj N(r,(L T j—i-S(r »
1 - 1 1 1
N”'(T’L(f)j+N(r’L <f><*'>—pj No (”(L <f>”°>/p>/j+S(”f)<N“‘(“(f—awlj*"'+

1 -~ 1 . N 1 .
Wj+N(r,mj+S(hf)<(k+.s)T(r,f>—FN(r’m)+S(r,f)

Thus. we get (n*k*s)T(r,f)gﬁ(r,L(f)lﬁj+S(r,f). Noting that n=>k+s, we get L (/)* =p

Niiq (ﬁ

has infinitely many solutions.
3. 2 Proof of theorem 2

Let L(2) and [ be given by (1) and (2), respectively. Without loss of generality, we suppose that a,=1,
(=1, and c=c,. We get

s N ( 71 ( . [/ N ( ’1 ( - )[)
Tim Neea (O 1/LEH) L 2INw G (=)t N (1) (f =

L . _ T g > . j=2 - 2
8&+1<O I(f)) 1 I,LIT;.} T(V’L(f)) 1 lrlnaol nT(r,f)

DIG—DTG )+ G+DTG ) +SG. b I
_%j:g > _S > — R —
! li»rg nT (ryf) =1 n n

Similarly. we have 8 ., (o,L<g>)>1—"‘:’€

EHQ% Because 5/=4n-+5k+7, we obtain 8,1, (0,L(g))+

82 (0L L)) 48,01 (0, L) +28,.1(0,L(g))=4.

By Lemma 8, we can obtain

P _bL ()P +(a—bp (16
L(NHP—p L ()" —p
Next, we consider the following three cases.
Case 1 07#0,a=b. Then from (16) we have
T = an
Case 1.1 If b=—1, then it follows from (17) that [L( /) ]J® [L(g)]*® =p*.
That is
L= (f—=c)lree(f—=c)H P [ (g—) (g—c) e (g—c ) ] =p? (18)
Case 1.1.1 When s=1, we can rewrite (18) [(f—)"]® « [(g—)" ] =p*. By using Lemma 10, we
can easily obtain f=b,e®+c,g=0b,e ?+c,where b, ,b, ,b are three constants satisfying (6,6,)" (nb)*=—1,Q

is a polynomial satisfying Q ZJ:p(n) d.
0

Case 1. 1.2 When s=2, we notice that 5/>>4n+5k-+7, hence [>>5k-+7. Suppose that z, & {z: p(2) =0}
is a [-fold zero of f—c¢, we know that =, must be a [—k-fold zero of [(f—c)! (f—c) 2+ (f—¢)%]?. Noting
that g is an entire function, it follows from (18) . which is a contradiction. Hence f—c¢7#0,g—c70. So we get
f=¢e“® +¢, where a(2) is a nonconstant entire function. Thus we have

[P =02+ 0P =p.(a vd" e Vet i=1,2,n (19)
where p;(i=1,2,---,n) is differential polynomials about a’ ,a”,**sa® . Obviously, »:7Z0, T(r,p,)=S(r, f)

1 .
p”e<,,,l>a+.__+plj =S(r. ).

According to Lemma 1 and Lemma 5 and f=e*® +¢, we get

(i=1,2,++,n), we get from (18) to (19) that N(r,
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— 1
n—DTG f—c)=T(,p,e"” ”“Jr"'JFpl)+S(r,f)<N[rapﬂe<,,—1>a+_,_+pl)+
— 1 — 1
< <(n— —
N(r’p,,e“’ ')”+--°+pze”)JrS(r’f)\N(r’p,,e(” 2)n+...+p2j+5(r,f)\(n DT f—c)+SG,

which is a contradiction.

Case 1.2 If a=b#—1, then (17) that can be written as

Lg™*_—1 . 1
p b LOP/p—A+b/b 20
From (20), we get
— 1 = o X
N(r,L (f)(“/p*(l+b)/bj_N(r’g)+0(10g )=S0, ) 2D

by (21) and Lemma 2, we get

1 R
L (f)“”/p—(Hb)/bj

1
j+S(r9f)<Nk+1 (”VWJJF

nT(rqf):T(raL(f))+()(1)<N(r,ﬁj,)j —|—N(r, N(iﬂ%) +SGr, H<<

(L (HP/p)

N,:Al(r, jJrN(r,g)JrO(log 7‘)+S(T,f)<Nk+l(r7

L 1
L L

1
Nk+] (7’9 (f*(,‘z)[z “‘(f*
which is a contradiction, because 5/>>4n+5k+7.
Case 2 b7#0,a7#b. We discuss the following we subcases:

),\)+S(raf)<(k+S)T(Vﬂf)+S(raf)<<k+nil+l)’r(ryf)+S(7‘9f)

Case 2. 1 Suppose that b=—1, then a70 and (16) can be rewritten as
LH® a

P T4 1—L (P /p (22)
From (22) we get
PR 1 _7 o
N(r’a+1—L (g)(k)/pj—N(r,f)+O(log r=S0r,g) (23)
From (23), Lemma 2 and Lemma 4, we get nT(r,g)= T(r,L(g))+O(1)<N“1(;’,L(1g)j+5(r,g).
Next, by using the argument as in case 1. 2, we get a contradiction.
Case 2. 2 Suppose that b6 —1, then (16) be rewritten as
LO™ b+l —a 1 (24)
p b br L (P /ptCa—b)/b
From(24), we get
N 1 _7
N(r,L (_f)(k)/P_(b+1)/]))_N(r’g)+0(log r) (25)

From (25), Lemma 2, Lemma 4 and in the same manner as in case 1. 2, we can get a contradiction.
Case 3 b=0,a70. Then (16) can be rewritten as
Lig)=al(fH+0—a)p, (2) (26)
where p,(2) is a polynomial with its deg p,=k—+1. If a1, then (1—a) p, (2)Z0. This together with (26)

and Lemma 1, we get

1
nT(r,g)—T(r,L(g))+()(1)<N(r,L( )j+N(r,L(‘f))+S(r,g)<

D N(r,
=1
because n=1[+1,++++1 , we get n—I[=[,+++[=5—1, 1 e, n—I[=s5s—1. From 5/>4n+5k+7, we have
[—1>4n—D +5k+6>4(s—1)+5k+6, son—s=1—1>4(s—1)+5k+6, i.e., n—s>4(s—1)+5k+6,
5k—2

thus, s<% Thus

jJrZ N(r, )+S(r,g) sSLTGag) + TG HI+ S 27)
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77T(r,g)<%]€2

On the other hand, from (26) and Lemma 3, we see that T(r,g) =T, f)+S(r,g).

Substituting this into (28), we deduce that

a=1, and so it follows from (26) that L(f)=L(g).
Hence, this completes the proof of Theorem 2.
3. 3 Proof of theorem 3

3nt+10k+4
5

T(r,g)<<S(r,g), which is a contradiction. Thus

By using lemma 9 and the condition l>%+k+2, proceeding as in the proof of theorem 2, we can similar-

ly prove theorem 3. We omit the details here.
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