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Some Equivalent Condition of Generalized Convex Fuzzy Mapping
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(College of Mathematics, Chongging Normal University, Chongqing 401331, China)

Abstract: In this paper, we obtain that a fuzzy mapping F is (strictly) pseudoconvex if and only if VF is (strictly) pseudo-

monotone, and a differenitiable fuzzy mapping F is quasiconvex if and only if VF is quasimonotone. These results will be
useful in checking the generalized convexity of the differenitiable fuzzy mapping and presenting some characterizations of
solutions for fuzzy mathematical programming.
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1 Introduction

The occurrence of randomness and fuzziness in the real world is inevitable owing to some unexpected situa-
tions. In [1], Zadeh initially introduced the concept of fuzzy number. Since then, theories of fuzzy number and
their applications have been extensively and intensively studied by many scholars, one can refer to [ 2-7].
Mathematical programming under fuzzy environment or which involves fuzziness is called fuzzy mathematical
programming. Bellman and Zadeh™ introduced fuzzy optimization problems and stated that a fuzzy decision can
be viewed as the intersection of fuzzy goals and problem constraints.

Nanda and Kar™ proposed the concept of convex fuzzy mappings and proved that a fuzzy mapping is con-
vex if and only if its epigraph is a convex set. At the same time, some applications to fuzzy mathematical pro-
gramming problems were studied. The convexity has been playing an important role in fuzzy mathematical pro-
gramming theory. Some related research work has been carried out, one can refer to [10-19]. But it is obvious
that the condition of convex fuzzy mappings is too strict. Recently, different types of generalized convex fuzzy
mappings were defined. Some properties and the applications were studied in fuzzy mathematical programming

1. 2 proposed the concept of quasiconvex fuzzy mappings, which is differ-

[16]

problems. Especially, Panigrahi et a

ent from Nanda and Kar™ as well as Syau", and derived the Karush-Kuhn-Tucker optimality conditions for

the constrained fuzzy minimization problems. Strict inequality relation between fuzzy numbers is used in [20],

]

which is too much restrictive. Syau"'” introduced the concept of generalized convexity such as pseudoconvexity

for fuzzy mappings with several variables and studied some basic differentiability properties of fuzzy mappings

from the standpoint of convex analysis.

[21] [22]

Motivated by the earlier works of Panigrahi et al.'*!, Karamardian'*"!, Karamardian and Schaible"**,

Wang™? as well as Liu et al. *, in this paper, we establish some equivalent conditions of (strictly) pseud-
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oconvex and quasiconvex fuzzy mappings.

2 Preliminaries

In this section, we quote some preliminary notations and definitions.

Let R be the set of all real numbers. A fuzzy number is a mapping x#:R—>[0,1] with the following proper-
ties: 1) s is normal, that is, [p], ={x€R:u(x)=1}7%J; 2) x is upper semicontinuous; 3) p is convex, that
is, pQz+ =D y)=Zmin{p(x), p(3)} for all z, y€R, A€ [0, 1]; 4) the support of x, supp(u) ={xER:
#(x)>0}and its closure cl(supp(u))is compact.

Let  be the all of fuzzy number on R. The a-level set of a fuzzy number £ € §, 0<<a<<1, denoted by [ ], .
is defined as [p], = {{1‘€R;#(1)>a} ’O<a<1.

clCsupp(p)) ,a=0

It is clear that the a-level set of a fuzzy number is a closed and bounded interval [z, (¢), x* (a)]. p. (a)
denotes the left-hand end point of [x], and " (@) denotes the right-hand end point of [x],. Also any m € R can
1,t=m
0.t7m
In particular, the fuzzy number 0 is defined as 0(z) =1 if 1=0 and otherwise 0(z) =0. Thus, fuzzy number

be regarded as a fuzzy number m defined by m(¢) =

¢ can be identified by a parameterized triples { (. (a),p" (a),a) :a€[0,1]}.
For fuzzy number x and v parameterized by {(z. (), p" (@)sa):a€[0,1]} and {(v. (&) ,v" (@) sa):a €

[0,1]}, respectively,and each nonnegative real number £, we define the addition ,ujrv and nonnegative scalar

multiplication &y as follows
ptv=1{(u. (@ +v. (@p" (@) +v" (a)sa):a€[0,1]} skpu={(kp. (@) skp” () sa) :a€[0,1]}.
Obviously.for each real number rv pt+r={(u. (@O +r, " (@ +rsa):a€[0,1]}.

Moreover, define the opposite of a fuzzy number x to be the fuzzy number —pu satisfying (—p) () =
#(—x). In other words,if p is represented by the parametric form {(p. (&) .p" (@) sa) :a€[0,1]},then —p is
represented by the corresponding parametric form {(—p. (@), —p" (@) a):a€[0,1]}. We represent a fuzzy
number g as [, (@), () ].

A fuzzy number p=[p. (a),p" (a)] is said to be a triangular fuzzy number if p. (1)=x" (1). Moreover,
if . (@) and p2” (@) are liner,then we say x a liner triangular fuzzy number. We denote by (. (05" (1) ;" (0)).

Definition 1" For u,v€ J.we say that u=<wv if for each «€[0,1],p. (@)<v. () s pt" (<" (). If u=<
v,v=<yp,then u=v. We say that «<v,if «<v and there exists a, €[0,1] such that . (a,)<<v. (a;) or p" (a,)<<
v (ap). For u,v€J, I either u=<v or y<p,then u and v are comparable,otherwise non-comparable.

A mapping F;: KE&R"—>S is said to be a fuzzy mapping. For any a € [0,1] and for any + € K, we denote
F(x)=[F. (zsa):F" (x,a)].

Definition 227 Let F: K& R"—S is fuzzy mapping. Then,F is said to be comparable if for each pair 27
yE K,F(x) and F(y) are comparable. Otherwise, F is said to be non-comparable.

Definition 3% Let KR’ be an open set and assume that F: K—3 be a fuzzy mapping. Let x=(x, x5 »

“,2,) €K and D, ,i=1,2,+,n stand for the partial dierentiation with respect to the ith variable x;. Assume
that for all « € [0,1],F. (x,a)and F* (x,a) have continuous partial derivatives. Define D. F () [a]=
[D,’_F . (xa) ,D},.IF “(xsa) ]sfor i=1,2,+n,a€[0,1].

If for each i=1,2,--- ,n,D»,.IF(l')[a] defines the a-cut of a fuzzy mapping number at x,and we denote by
VE(x)=(D, F(2),D, F(x),+,D, F(x)).

We call VF(2),the gradient of the fuzzy mapping F at x. A fuzzy number F is said to be differentiable at
x if VE(2) exists and both F. (x,a),F" (z.a) for cach «€[0,1] are differentiable at .
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Definition 40  Let K& R" be a nonempty open convex set and F: K—>S be a differentiable fuzzy map-

ping. F is said to be pseudconvex if for each x,y€ K,0<VF (2)"(y—x) implies that F(2) <F(y).
Definition 577 Let K R” be a nonempty convex set and F: K—>S be a fuzzy mapping. F is said to be
quasiconvex if for each x, y € K and for A € (0, 1), The following implication hold F (Ax + (1 —2) y) <
max{F(x),F(y)}, where F(x) and F(y) are comparable.
Definition 67  Let KCR” be a nonempty convex set and F: K—3 be a differentiable fuzzy mapping. F is

said to be strictly pseudconvex if for each 1',y€K,6§%F ()" (y—a) implies that F(x) <F(y).
In the following sections,we always assume that K&R" be a nonempty convex set, F;: K&R"—>S be a dif-

ferentiable fuzzy mapping and I be comparable.

3 Pseudoconvexity of fuzzy mappings

In this section, we establish the equivalent conditions of pseudoconvexity and strictly pseudoconvexity fuzzy
mappings. We first give some lemmas which will be used in the sequel.

[23]

Lemma 1 Assume that F be a pseudoconvexity fuzzy mappings. Then F is a quasiconvex fuzzy map-

ping.

Lemma 2 F is a quasiconvex fuzzy mapping if and only if for each z,y€ K,F(2) <F(y) implies that
VE (3" (x—y)<0.

Theorem 1 F is a pseudoconvexity fuzzy mappings if and only if for each x,y€ K.,0<VF ()T (y—2a) im-
plies that 0<VF ()" (y—2).

Proof Suppose that F is a pseudoconvexity fuzzy mappings. Let x,y€ K be such that

0=<VF ()" (y—a). D)
We need to show that 0<VF (y)"(y—z). Assume to the contrary that VF (" (y—2)<0. 2
By the pseudoconvexity of F and (1).,we have F(x)<F(y). (3)

By Lemma 1 and Lemma 2,it follows from (3) that 0<VF (y)"(y—x),which contradicts to (2).

Conversely,let x,y€ K be such that 0<VF ()" (y—x). 4
We need to show that F(2) <F(y). Assume that contrary,that is, F(y) <F(z). Hence,For each «€[0,1],
F.(y,0)<F, (x,0),F" (y,a)<XF" (x,a) ,and there exists an a, € [0,1],such that F, (y.,a,)<<F. (x,a,) or

F" (y,a))<<F" (x,a,). Without loss of generality,we assume that

F. (y.a)<<F. (z.a). (5)
From the mean-value theorem,we have
F. (y,ap)—F.(x.sa0)=VF. (z,a,)" (y—2). (6)
where x=x+2A(y—x) for some A€ (0,1). From (5) and (6),we have
0<VF. (Zsa) " (x—2). (D

On the other hand,from (4),it follows that 0<VF (2)"(z—x). From the comparability assumption of
F,this implies that 0<VF ()" (z—2). Then,for each «€[0,1],we have 0OSXVF. (z,a) " (x—x) s which con-
tradicts to (7).

The proof of Theorem 1 is completed.

Remark 1 Theorem 1 generalizes Karamardian’s result (Theorem 3.1 in [21]) to fuzzy mapping case.

Theorem 2 F is a strictly pseudoconvex fuzzy mapping if and only if for each x, yE K,z # y, 0 <
VF ()" (y—x) implies that 0<VF ()" (y—2).

Proof Suppose that F is a strictly pseudoconvex fuzzy mapping. Let x.y€ K,x7y,such that

0<VF ()" (y—2). (8)
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We need to show that 0<VF (y)"(y—z). Assume to the contrary that VFE (9" (y—2)<0. €D
Combine with (8) and from strict pseudoconvexity of F,we have F(x)<F(y). (10)

On the other hand, (9) can be written as 0<VF (y)"(x—y). From strict pseudoconvexity of F.it follows
that F(y)<F(x),which contradicts to (10).

Conversely,let x,y€ K,x7#y be such that 0<VF ()" (y—2). (1D
We need to show F(x)<F(y). Assume to the contrary that F(y) <F(x). Hence,for each « € [0,1],
F.(y,0)<F. (x, ), F" (y,0)<F" (x,0). (12)
From the mean-value theorem,we have
F.(y,a)—F.(x,0)=VF. (z,0)" (y—2). (13)
where xr=x+2A(y—x) for some A€ (0,1). From (12) and (13),we have
0<VF. (z,0) " (x—2). (14)

On the other hand.from (11).it follows that 0<VF ()" (z—x) ,which implies that 0<VF ()" (z—x).
Then,for each « €[0,1],0<F. (x.a)" (x—x) ,which contradicts to (14).

The proof of Theorem 2 is completed.

Remark 2 Theorem 2 generalizes Karamardian and Schaible’s result (Proposition 4.1 in [22]) to fuzzy

mapping case.
4 Quasiconvexity of fuzzy mappings

In this section,we establish an equivalent condition of a differentiable quasiconvex fuzzy mapping.
Theorem 3 F is a quasiconvex fuzzy mapping if and only if for each x,yGK,6<%F ()" (y—2x) implies
that 0<VF (0" (y—a).
Proof Suppose that F is a quasiconvex fuzzy mapping. Let x,y€ K be such that
0<VF ()" (y—2). (15)
The relation F(y) <F(x) is not possible. Otherwise,it will imply that VF ()" (y—2) =<0, according to Lem-

ma 2,which contradicts to (15). From the compatibility,
F(x)<F(y). (16)

From Lemma 2 and (16),it follows that VF ()" (z—1) <0, i.e. ,0=<VF ()" (y—2).
Conversely,assume that F is not a quasiconvex fuzzy mapping. Then, there exists a € [0,1], such that
F.(y,0<F, (z,0)<F.(z,a), or F*" (y,a)<F" (2,0)<F" (z,a). Without loss of generality, we assume

that F.(y,0)<F. (x,0)<F. (z,). (17
By the mean-value theorem.,then there exist 2, ,z, such that

F. &.a)—F, (xya)=VF, (z,,0) " (T—x), (18)

F.(z,o—F.(y,0)=VF. (z,, )" (x— ), (19)

where n=xtA(y—2),z, =2+, (y—x),0<A, <A<<A,<1. 20)

From (17), (18) and (19), it follow that 0<<VF. (z;,0)"(z—2),0<VF. (2,,0)"(x—3). Thus,(20) yields

0<VF. (z1,0) " (zs—21), 2D 0<VF. (23,007 (21 —25), (22)

On the other hand, from (20) and the hypothesis:for each 1,y€K,6<%F ()" (y—x) implies that 0<

VF (y)"(y—a). We obtain that 0<VF (2,)"(2,—2,). Hence 0<<VF. (2,,a)" (2,—2,), which contradicts to
(22).

The proof of Theorem 3 is completed.

Remark 3 Theorem 3 generalizes Karamardian and Schaible’s result (Proposition 5.2 in [22] to fuzzy

mapping case.
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