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A Preconditioned Matrix Splitting Method for Solving Saddle
Point Problem with Indefinite (1,1) Block

CHENG Jun
(College of Teacher Education, Qujing Normal University, Qujing Yunnan 655011, China)

Abstract: we propose a preconditioned of the Gill-Murray forced definite method, which forces a symmetric indefinite ma-
trix to a positive definite matrix. Then the splitting is used to construct an iterative method, that is the coefficient matrix
is multiplied by a preconditioned matrix P, then the coefficient matrix is split and get an iterative matrix, The Iteration
method is used for solving the saddle point problems which (1,1) block is indefinite in the coefficient matrix. Under suit-
able conditions, we prove the convergence of the new preconditioned iterative method. Finally, this paper shows that the
resulting new preconditioned method leads to fast convergence.
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1 Introduction

In this paper, we consider the iterative solution for two by two block linear system of the form
A B (2] [f
[B o}uu v
where ACGR"*", is symmetric indefinite, BE R" " (n=m) has row full rank, that is rank (B) =m, vectors x,
SER", y, g€R”, Under these assumptions, the above (1) has a unique solution. This linear system is called
a saddle point problem.,

Saddle point problems arises in many different applications scientific computing fields and engineering ap-
plications fields such as constrained optimization, computational fluid dynamics, mixed finite element methods
for solving elliptic partial differential equations and Stokes problems, constrained least-squares problems,
structure analysis and so forth"®. When A€ R"*" is a symmetric positive definite matrix in the linear system
(1), this problem many papers have discussed™*'".

In this paper, a preconditioned of the Gill-Murray forced definite method is considered for solving the sad-
dle point problem with symmetric indefinite A€ R"*", the remainder of the paper is organized as follows. In
section 2, we propose preconditioned iterative method. In section 3, we discuss the conditions for guaranteeing

its convergence. In section 4, is given to show the new method is feasible and efficient.
2 Preconditioned iterative method

In this section, we present a preconditioned iterative method for the saddle point problem (1) when A €
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R"*", is symmetric indefinite.

For the sake of simplicity, we rewrite the saddle point system (1) as
A B'][x
WL @
—B 0 v —g
The Gill-Murray forced definite method has been proposed™, which construct the following matrix split-
A B"] [LDL" 0] [E —B .
—B 0 M—B Q M Q |

- 0
Multiplying both sides of the linear system with left preconditioned matrix P= L) I} , then we have

5 S G

(1]

ting

Let ACR"“", be symmetric indefinite. Then from the Gill-Murray forced definite decomposition"", there

exists a decomposition which forced positive definite, i. e.
A=LDL'—E (5)
Where L is identity lower triangular, D is positive diagonal, and LDL" is symmetric positive definite, E is diag-

onal.
From(5), let P=(LDL")™"', we use the decomposition (4) to construct the following matrix splitting
|:PA PBT:||: | 0:||:(LDLT)1E (LDLT>1BT:|. )
~B 0 M—B 0 M 0

I

0
Where Q is symmetric and nonsingular, { B Q}S nonsingular.

By using the splitting(7), we propose the following iterative method for solving (2)

[ I OM@M]_{(LDLU 'E  —(LDL") 'B’I‘M\x,,}+[(LDL“) 'fJ N
MiB Q Vut+1 M Q Va - 8

This iterative method can be written as following algorithm.

Algorithm

Step I  Using the Gill-Murray forced definite algorithm™, produce the decomposition A=LDL" —E;

Step I Choose matrices MER" ", PER"*", and M, construct matrix splitting (6) ;

Step Il  Given initial vectors x, €R" and y, € R", for k=0,1,2,,{(2, s v.")"} is produced by the
following scheme
; €))
Vor1=v,— Q@ 'M—B)x,., +Q 'Mxr,—Q 'g

I 0] '[@DL")y 'E — (LDL") 'B"

M—B Q} [ M Q }

{xm =(LDL") '"Ex,—(LDL") 'B"y,+(LDL") ' f

The iteration matrix is G= l:

3 Convergence analysis

In the following, we discuss the convergence property of the iterative method (8). Let p(G) denote the
spectral radius of the iterative matrix G. Then this method converges if and only if p(G) <T1. Let A be an

eigenvalue of G and (u;",v,")" be the corresponding eigenvector, that is
(LDL") 'E — (LDL") 'B" [« I 07 [u
M 0 v M—B Q v

(LDL") "Eu—(LDL") 'B"v=1lu
{[M*l(M*B)]u:(Z*I)Q“U

or equivalently

(10)



74 FERFREAFFMEABFHK  htp://www. cqnuj. cn %32 %

Lemma™’ Both roots of the quadratic equation x’+bx+¢=0 have modulus less than one if and only if
| ¢ | <land | b ] <14e.

Now, we present the convergence theorem.

Theorem Assume that A€ R"*" is symmetric indefinite and A=LDL" —E, where L is identity lower tri-
angular, D is positive diagonal, E is diagonal, BE R” *"(n=m) has full row rank, Q are nonsingular and sym-
metric. Let A be an eigenvalue of G and («", v')T be the corresponding eigenvector, then the iterative method

(8) is convergent if and only if

| Qe T B | <1
, (1D
O<7<2(1+anlax+ﬁlnax)
Ty-1pn T T TN—1pT—1 T Ty—1pT—1
where g— 4 (LDLT) Eu ’ B:u (LDL )T B'Q Mu’ y:u (LDL )T B'Q 'Bu and aus s B are the largest
u'u u'u u'u

eigenvalues of (LDL") 'E and (LDL™) 'B"Q " 'M.
Proof From (10), we have A—Dov={1—)Q 'Mu+Q 'Bu, and
A—DWDL") "'Eu— (11— DL 'BTQ 'Mu—2A (LDL") "'B"Q 'Bu=1(A—1Du. (12)
-

Multiplying both sides of this equation from left with MT, we have
u'u

T T 1 T, 1 T T 1 pT 1 n, T
u (LDL ) 'BQ Muiku (LDL )T B Q0 BMZA(A*I)Q. (13)
u'u

uTu u u

QA—=1D

(1=

u" (LDL") 'Eu
T

That is A* — (1+a+—7)A +a+p=0.

la+R] <1
[1+tatp—r|<ld+atpg’

| @ T Bna | <1

07 <21+ @pmax + )

From the above lemma, | A | <{1 if and only if {

Hence the iteration method (8) converges if and only if {
The proof of thetheorem is completed.

4 Numerical example

In this section, we give a numerical example to show that the iteration method (8) is feasible and effec-
tive.

Example Let A=(a;), B=(b;), where

i—1.i—j]=1 iy i=j
(ay)pn=3—0—1,i=j  (by),,=<i—1, li—jl=1.
0, others 0, others

Then the conditions of the above theorem are satisfied. We use a zero initial guess and stop the iteration as

soon as the relative residual is less than 10 °, the corresponding numerical results are listed in Tab. 1.

Tab.1 The spectral radii and the seconds needed for convergence

N p(G) CPU IT
50 0.085 6 0.063 0 310
100 0.085 6 0.282 0 335
150 0.085 6 0.773 0 452

In Tab. 1, we list the spectral radius p of the iterative matrix G, IT denotes the iteration steps and the sec-
onds needed for convergence of the iteration method (8) for different values of N. Tab. 1 shows that the itera-

tive method (8) is convergent, and the new method is effective.



Vol. 32 No. 1

Journal of Chongqing Normal University (Natural Science)

http://www. cqnuj. cn 75

References:

[1] #Rme Bt BRaET . 22 79 i AR A J7 i (ML b s B2 il
FiAt 2002 62-67.

Cheng X X,Chen Z P,Li N C. Modern optimization meth-
ods[ M. Beijing : Science Press,2002.

[2] Zhou Y Y,Zhang G F. A generalization of parameterized in-
exact Uzawa methods for generalized saddle point problems
[J]. Applied Mathematics and Computation,2009,215(2) ;
599-607.

[3] Ling X F,Hu X. On the iterative algorithm for large sparse
saddle point problems[ ]J]. Applied Mathematics and Com-
putation,2006,178(2) :372-379.

[4] Jiang M Q,Cao Y. On local Hermitian and skew-Hermitian
splitting iteration methods for generatized saddle point
problems[J]. Journal of Computational and Applied Mathe-
matics,2009,231(2):973-982.

[5] Bai Z Z,Benzi M, Wang F. Modified HSS iteration methods
for a class of complex symmetric linear systems[]J]. Com-
puting,2010,87.:93-111.

[6] Cao Z H. Fast Uzawa algorithm for generalized saddle point

problems[ J]. Applied Numerical Mathematics, 2003, 46
157-171.

[7] Chen F,Jiang Y L. A generalization of the inexact parame-
terized Uzawa methods for saddle point problems[]J]. Ap-
plied Mathematics and Computation, 2008, 206 (2): 765-
771.

[8] Cui M R. Analysis of iterative algorithms of Uzawa type for
saddle point problems[]J]. Applied Numerical Mathemat-
ics»2004,50(2) :133-146.

(o] B, 5k i 28, 5k H . —25C T IDP-SOR J5 4 19 8% 4 [ it

1. A2 B 42, 2010, 29(11) £ 29-31.
Cheng J,Zhang Y K,Zhang L. ]J. A class of IDP-SOR meth-
od of saddle point problem[]]. Journal of Huaihua Univer-
sity,2010,29(11) :29-31.

[10] B MS. 46 B i [ M. V822« PG 46 oll R 2t i it , 2005

266-271.
Cheng Y P. Matrix theory[ M. Xi’” an: Northwest Poly-
technical University Press,2005:266-271.

BADRIEE[/ BB E G RTTIE

#2

7

IS 2 B #OMBE B, =5 My 655011)
WE: RET L FER-BEBUEFENTAG TR BT EREE AR AEEE B QA E - NEEER . KEAZLE T &
Mg — AN BRFTEATREEARERFQ DA FETNHAF A EAENLFE T W THNOT LA E2REN RS RE,

HAE 50 % R R T4 1 O ik AR s
KW A A HA-BRE R IEE T % T AN

(FTHERH/ F %)



