DOI:10.11721/cqnuj20150512

Normal Criteria of Meromorphic Functions Concerning **Shared a Holomophic Function**

WU Chun

(College of Mathematics Sciences, Chongqing Normal University, Chongqing 401331, China)

Abstract: In this paper, we study the normality criterion concerning shared a holomorphic function. Let F be a family of meromorphic functions defined in D, let $k(\geqslant 1)$, $m(\geqslant 0)$ be two integer, and let $\omega \not\equiv 0$ be a holomorphic function with zeros of multiplicity m in D. If, for any $f \in F$, the multiplicity of all zeros and poles of f is at least $\max\{m+k, m+1+k/2\}$, and if $ff^{(k)}$, $gg^{(k)}$ share ω IM for every pair of functions $f,g \in F$, then F is normal in D.

Key words: meromorphic functions: normal families: holomorphic function

CLC number: O174.5 Document code: A Article number: 1672-6693 (2015) 05-0075-06

1 Introduction and main result

Let D be a domain in C, and F be a family of meromorphic functions defined in a domain D. F is said to be normal in D, in the sense of Montel, if for any sequence $\{f_n\} \subseteq F$, there exists a subsequence $\{f_n\}$ such that f_{n_i} converges spherically locally uniformly in D_i to a meromorphic function or $\infty^{[1-3]}$.

Let g(z) be a meromorphic function, a be a finite complex number. If f(z) and g(z) assume the same zeros, then we say that share a IM (ignoring multiplicity) [1,4-5].

In 2004, Fang and Zalcman^[6] got the following results.

Theorem A Suppose that k is a positive integer and $a \neq 0$ is a finite complex number. Let F be a family of meromorphic functions defined in a domain D. If for each pair of functions $f,g \in F$, f and g share $0,f^{(k)}$ and $g^{(k)}$ share a IM in D, and the zeros of f are of multiplicity $\geqslant k+2$, then F is normal in D.

In 2011, Meng^[7] proved the following result.

Theorem B Take a positive integer k and a non-zero complex number a. Let F be a family of meromorphic functions in a domain $D \subseteq \mathbb{C}$ such that each $f \in \mathcal{F}$ has only zeros of multiplicity at least k+1. For each pair $(f,g) \in F$ if $ff^{(k)}$ and $gg^{(k)}$ share a IM, then F is normal in D.

Theorem C Take a positive integer $k \ge 2$ and a non-zero complex number a. Let F be a family of holomorphic functions in a domain $D \subseteq \mathbb{C}$ such that each $f \in F$ has only zeros of multiplicity at least k. For each pair $(f,g) \in F$, if $ff^{(k)}$ and $gg^{(k)}$ share a IM, then F is normal in D.

In 2012, Zeng^[8] proved the following result.

Theorem D Let k be a positive integer, $a(\neq 0)$ and b be two finite values. Let F be a family of meromor-

Internet publishing address:

收稿日期:2014-03-31 修回日期:2015-04-09 网络出版时间:2015-05-15 12:44

资助项目:重庆师范大学青年基金(No. 12XWQ17);重庆市教委科技项目(No. KJ130632);重庆师范大学博士启动基金(No. 13XLB024)

作者简介:吴春,男,副教授,博士,研究方向为值分布理论,E-mail: wuchun@cqnu.edu.cn

网络出版地址:http://www.cnki.net/kcms/detail/50.1165.n.20150515.1244.019.html

Received: 03-31-2014 **Accepted:** 04-09-2015 Internet publishing time:

Foundation: Youth Foundation of Chongqing Normal University (No. 12XWQ17); Scientific and Technological Research Program of Chongqing Municipal Education Commission(No. KJ130632); the Found of Chongqing Normal University(No. 13XLB024)

The first author biography: WU Chun, male, associate professor, doctor, engaged in the study of value distribution theory, E-mail; wuchun @cqnu. edu. cn

phic functions defined in D, all of whose zeros have multiplicity at least k and $f^{(k)}(z) = b$ when f(z) = 0. If for each pair of functions f and g in F, $ff^{(k)}$ and $gg^{(k)}$ share a, then F is normal in D.

It is natural to ask whether there exist normality theorems corresponding to Theorem B if a is a function? In this paper, we study the problem and obtain the following theorem.

Theorem 1 Let F be a family of meromorphic functions dened in D, let $k(\geqslant 1)$, $m(\geqslant 0)$ be two integer, and let $\omega \not\equiv 0$ be a holomorphic function with zeros of multiplicity m in D. If, for any $f \in F$, the multiplicity of all zeros and poles of f is at least $\max\{m+k,m+1+k/2\}$, and if $ff^{(k)}$, $gg^{(k)}$ share ω IM for every pair of functions $f,g \in F$, then F is normal in D.

Corollary 1 Let F be a family of holomorphic functions defined in D, let $k(\geqslant 1)$, $m(\geqslant 0)$ be two integer, and let $\omega \not\equiv 0$ be a holomorphic function with zeros of multiplicity m in D. If, for any $f \in F$, f has only zeros of multiplicity m+k at least, and if $ff^{(k)}$, $gg^{(k)}$ share ω IM for every pair of functions $f,g \in F$, then F is normal in D.

Corollary 2 Let F be a family of holomorphic functions defined in D, let $k(\ge 1)$, $m(\ge 0)$ be two integer, and let $\omega \not\equiv 0$ be a holomorphic function with zeros of multiplicity m in D. If, for any $f \in F$, f has only zeros of multiplicity m+k at least, and $ff^{(k)} \neq \omega(z)$, then F is normal in D.

Corollary 3 Let F be a family of meromorphic functions defined in D, let $k(\geqslant 1)$, $m(\geqslant 0)$ be two integer, and let $\omega \not\equiv 0$ be a holomorphic function with zeros of multiplicity m in D. If, for any $f \in F$, the multiplicity of all zeros and poles of f is at least $\max\{m+k,m+1+k/2\}$, and $ff^{(k)} \neq \omega(z)$, then F is normal in D.

Remark Clearly, when m=0, Theorem 1 and Corollary 1 extends Theorem B and C.

2 Some lemmas

Lemma 1(Zalcman's Lemma)^[9-10] Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ and α be a real number satisfying $-1 < \alpha < 1$. Then if \mathcal{F} is not normal at a point $z_0 \in \Delta$, there exist, for each $-1 < \alpha < 1$:

1) a real number r, r < 1; 2) points z_n , $|z_n| < r$; 3) positive numbers ρ_n , $\rho_n \rightarrow 0^+$; 4) functions f_n , $f_n \in \mathcal{F}$, such that $g_n(\xi) = \frac{f_n(z_n + \rho_n \xi)}{\rho_n^{\sigma}}$, spherically uniformly on compact subsets of \mathbf{C} , where $g(\xi)$ is a non-constant meromorphic function and $g^{\#}(\xi) \leq g^{\#}(0) = 1$. Moreover, the order of g is not greater than 2.

By using the method of Lemma 2.6 in Meng[11], we have the following Lemmas.

Lemma 2 Let f be a transcendental meromorphic function whose zeros have multiplicity at least k, and let $p(z)(\not\equiv 0)$ be a polynomial. Then $ff^{(k)} - p(z)$ has infinitely many zeros.

Lemma 3 Let $p(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0$ be a polynomial, where $a_m \neq 0$, a_{m-1}, \dots, a_0 are constants. Let $k \geq 1$ be an integer, if f be a nonconstant polynomial, and all the zeros of f have multiplicity m+k at least, then $ff^{(k)} - p(z)$ has at least two distinct zeros.

Proof Since f is a non-constant polynomial with zeros of multiplicity m+k at least, thus deg $(ff^{(k)}) > \deg p(z)$, then $ff^{(k)} - p(z)$ has at least one zero.

If $ff^{(k)} - p(z)$ has only one zero z_0 . We may assume $ff^{(k)} - p(z) = A(z - z_0)^l$, where A is a non-zero constant, l is a positive integer. Then, $l = \deg(ff^{(k)}) > m+1$, therefore,

$$(ff^{(k)})^{(m)} - Al(l-1) \cdots (l-m+1) (z-z_0)^{l-m} = a_m \cdot m! \neq 0,$$

$$(ff^{(k)})^{(m+1)} - Al(l-1) \cdots (l-m) (z-z_0)^{l-m-1} = 0,$$

thus z_0 is the unique zero of $(ff^{(k)})^{(m+1)}$. Since f is a non-constant polynomial with zeros of multiplicity m+k at least, then z_0 is a zero of f, thus $(ff^{(k)})^{(m)}(z_0)=0$, it contradicts with $(ff^{(k)})^{(m)}(z_0)=a_m \cdot m! \neq 0$. Thus, $ff^{(k)}-p(z)$ has at least two distinct zeros.

Lemma 4 Let f be a nonconstant rational function whose zeros and poles have multiplicity at least m+1+k/2, k be a positive integer and p(z) be a non-zero polynomial of degree m, then $ff^{(k)}-p(z)$ has at least two distinct zeros.

Proof Let

$$f = A \frac{(z - \alpha_1)^{m_1} \cdots (z - \alpha_s)^{m_s}}{(z - \beta_1)^{n_1} \cdots (z - \beta_t)^{n_t}}.$$
 (1)

Where A is a non-zero constant and $m_i \geqslant m+1+k/2 (i=1,2,\cdots,s), n_i \geqslant m+1+k/2 (i=1,2,\cdots,t).$

Moreover, we denote

$$m_1 + m_2 + \dots + m_s = M \geqslant (m+1+k/2)s, n_1 + n_2 + \dots + n_t = N \geqslant (m+1+k/2)t.$$
 (2)

By (1), we obtain

$$f^{(k)}(z) = A \frac{(z - \alpha_1)^{m_1 - k} \cdots (z - \alpha_s)^{m_s - k} g(z)}{(z - \beta_1)^{n_1 + k} \cdots (z - \beta_t)^{n_t + k}},$$
(3)

where g(z) is a polynomial of degree at most k(s+t-1). Thus (1) together with (3) imply

$$ff^{(k)}(z) = A^{2} \frac{(z - \alpha_{1})^{2m_{1}-k} \cdots (z - \alpha_{s})^{2m_{s}-k} g(z)}{(z - \beta_{1})^{2n_{1}+k} \cdots (z - \beta_{t})^{2n_{t}+k}},$$
(4)

Differentiate both sides of (4), we obtain

$$(ff^{(k)}(z))' = \frac{(z-\alpha_1)^{2m_1-k-1}\cdots(z-\alpha_s)^{2m_s-k-1}g_1(z)}{(z-\beta_1)^{2n_1+k+1}\cdots(z-\beta_t)^{2n_t+k+1}},$$
(5)

where $g_1(z)$ is a polynomial of degree at most (k+1)(s+t-1).

$$(ff^{(k)}(z))^{(m+1)} = \frac{(z-\alpha_1)^{2m_1-k-m-1}\cdots(z-\alpha_s)^{2m_s-k-m-1}g_{m+1}(z)}{(z-\beta_1)^{2n_1+k+m+1}\cdots(z-\beta_t)^{2n_t+k+m+1}},$$
(6)

where $g_{m+1}(z)$ is a polynomial of degree at most (k+m+1)(s+t-1).

Next, we discuss two cases.

Case 1 If $ff^{(k)} - p(z)$ has a unique zero z_0 , then let

$$ff^{(k)}(z) - p(z) = \frac{B(z - z_0)^l}{(z - \beta_1)^{2n_1 + k} \cdots (z - \beta_t)^{2n_t + k}},$$
(7)

where B is a non-zero constant, l is a positive integer.

Here, we discuss two subcases.

Case 1.1 Suppose $m \ge l$. Differentiate both sides of (7), we have

$$(ff^{(k)}(z))^{(m+1)} - p^{(m+1)}(z) = \frac{CQ_{m+1}(z)}{(z - \beta_1)^{2n_1 + k + m + 1} \cdots (z - \beta_t)^{2n_t + k + m + 1}},$$
(8)

where $Q_{m+1}(z) = (l-2N-tk)(l-2N-tk-1)\cdots(l-2N-tk-m)z^{(m+1)t-(m-l+1)} + \cdots + b_1z + b_0$ is a polynomial, b_1, b_0 are constants.

Comparing (4) with (7), by $m \ge l$, we have $2N + tk + m = \deg g + 2M - sk \le k(s + t - 1) + 2M - sk$, hence, $2(M-N) \ge m + k > 0$. From (6) and (8), we get $2M - s(k + m + 1) \le (m + 1)t - (m - l + 1)$. Hence

$$m-l+1 \leqslant (m+1)t+s(k+m+1)-2M \leqslant \frac{(m+1)N}{m+1+k/2} + \frac{(k+m+1)M}{m+1+k/2} - 2M \leqslant \frac{(m+1)M}{m+1+k/2} + \frac{(k+m+1)M}{m+1+k/2} - 2M = 0.$$

i. e. ,l-m > 1, it contradicts with $m \ge l$.

Case 1.2 Suppose $m \le l$. Differentiate both sides of (7), we have

$$(ff^{(k)}(z))^{(m+1)} - p^{(m+1)}(z) = \frac{(z - z_0)^{l-m-1} R(z)}{(z - \beta_1)^{2n_1 + k + m + 1} \cdots (z - \beta_t)^{2n_t + k + m + 1}},$$
(9)

where $R(z) = B(l-2N-tk)(l-2N-tk-1)\cdots(l-2N-tk-m)z^{(m+1)t} + \cdots + c_1z + c_0$ is a polynomial, c_1 , c_0 are constants.

Next, we discuss three subcases.

Case 1.2.1 If $l \le 2N + tk + m$. By (4), (7), similar to the proof of Subcase 1.1, we get M > N. From (6), (9), we have $2M - s(k+m+1) \le (m+1)t$. i. e.,

$$2M \leqslant (m+1)t + s(k+m+1) \leqslant \frac{(m+1)N}{m+1+k/2} + \frac{(k+m+1)M}{m+1+k/2} < \frac{(m+1)M}{m+1+k/2} + \frac{(k+m+1)M}{m+1+k/2} = 2M,$$

which is impossible.

Case 1.2.2 If l=2N+tk+m. Suppose M>N, by (6),(9), we get $2M-s(k+m+1) \leq (m+1)t$. i. e., $2M \leq (m+1)t+s(k+m+1) \leq \frac{(m+1)N}{m+1+k/2} + \frac{(k+m+1)M}{m+1+k/2} < \frac{(m+1)M}{m+1+k/2} + \frac{(k+m+1)M}{m+1+k/2} = 2M$,

which is contradiction.

Thus, $M \le N$. By (6), (9), we obtain $l - m - a \le (k + m + 1)(s + t - 1)$. Since l = 2N + tk + m, then $2N - 1 + tk = l - m - 1 \le (k + m + 1)(s + t - 1)$, i.e.,

$$2N \leqslant (k+m+1)(s+t-1)+1-tk \leqslant s(k+m+1)+t(m+1) \leqslant \frac{M(k+m+1)}{m+1+k/2} + \frac{N(m+1)}{m+1+k/2} \leqslant 2N,$$

which is contradiction.

Case 1.2.3 If l > 2N + tk + m. Suppose $M \le N$, by (4), (7), we have $l \le 2N + tk + m$, which is a contradiction. Thus, M > N. From (6), (9), we have $2M - s(k + m + 1) \le t(m + 1)$. Then,

$$2M \leq s(k+m+1)+t(m+1) \leq \frac{M(k+m+1)}{m+1+k/2} + \frac{N(m+1)}{m+1+k/2} \leq 2M,$$

which is impossible.

Case 2 If $ff^{(k)} - p(z)$ has no zero, then l=0 for (7). Proceeding as in the proof for case 1, we also obtain a contradiction.

Therefore, Lemma 4 is proved complectly.

3 Proof of theorem

3.1 Proof of Theorem 1

For any point $z_0 \in D$, either $\omega(z_0) = 0$ or $\omega(z_0) \neq 0$.

Next, we consider the following two cases.

Case 1 If $\omega(z_0) = 0$. We may assume $z_0 = 0$. Then, $\omega(z) = z^n h(z)$ where $n \ge 1$ is a positive integer and h(z) is holomorphic in D with h(0) = 1 for D. Let $F_1 = \left\{ F_j = \frac{f_j(z)}{z^n}, f_j \in F \right\}$. We shall prove F_1 is normal at origin. Suppose not, by Lemma 1, there exist points $z_i \to 0$, positive numbers $\rho_i \to 0$ and $F_i \in F_1$ such that $g_i(\xi) = \rho_i^{-\frac{k}{2}} F_i(z_i + \rho_i \xi)$ converges uniformly to a non-constant meromorphic function $g(\xi)$ in C with respect to the spherical metric. Moreover, $g(\xi)$ is of order at most 2.

Now, we distinguish two cases.

Case 1.1 There exists a subsequence of $\frac{z_i}{\rho_i}$, we may still denote it as $\frac{z_i}{\rho_i}$ such that $\frac{z_i}{\rho_i} \rightarrow \alpha, \alpha$ is a finite complex number. We have

$$G_{i}(\xi):=\frac{f_{i}(\rho_{i}\xi)}{\rho_{i}^{n+\frac{k}{2}}}=\frac{(\rho_{i}\xi)^{n}F_{i}\left(z_{i}+\rho_{i}\left(\xi-\frac{z_{i}}{\rho_{i}}\right)\right)}{(\rho_{i})^{n}(\rho_{i})^{\frac{k}{2}}}\rightarrow\xi^{n}g(\xi-\alpha)=\widetilde{g}(\xi),$$

spherically locally uniformly in C. Hence,

$$G_{i}(\xi)G_{i}^{(k)}(\xi) - \frac{\omega(\rho_{i}\xi)}{\rho_{i}^{n}} = \frac{f_{i}(\rho_{i}\xi)f_{i}^{(k)}(\rho_{i}\xi) - \omega(\rho_{i}\xi)}{\rho_{i}^{n}} \rightarrow \widetilde{g}(\xi)\widetilde{g}^{(k)}(\xi) - \xi^{n}$$

spherically locally uniformly in C.

For any $f \in \mathcal{F}$, he multiplicity of every zero of f is $\max\{m+k,m+1+k/2\}$ at least, the multiplicity of every zero of \widetilde{g} is $\max\{m+k,m+1+k/2\}$ at least, from Lemma $2 \sim 4$, we get $\widetilde{g}(\xi)\widetilde{g}^{(k)}(\xi) - \xi^n \not\equiv 0$, and $\widetilde{g}(\xi)\widetilde{g}^{(k)}(\xi) - \xi^n$ has two distinct zeros at least.

Let ξ_0 and ξ_0^* be two distinct zeros of $\widetilde{g}(\xi)\widetilde{g}^{(k)}(\xi)-\xi^n$.

We choose a positive number δ small enough such that $D_1 \cap D_2 = \emptyset$ and such that $\widetilde{g}(\xi)\widetilde{g}^{(k)}(\xi) - \xi^n$ has no other zeros in $D_1 \cup D_2$ except for ξ_0 and ξ_0^* , where

$$D_{1} = \left\{ \boldsymbol{\xi} \in \mathbf{C} \mid |\boldsymbol{\xi} - \boldsymbol{\xi}_{0}| < \delta \right\}, D_{2} = \left\{ \boldsymbol{\xi} \in C \mid |\boldsymbol{\xi} - \boldsymbol{\xi}_{0}^{*}| < \delta \right\}. \tag{10}$$

By Hurwitz's theorem, for sufficiently large i there exist points $\xi_i \in D_1, \xi_i^* \in D_2$ such that

$$f_i(\rho_i\xi_i)f_i^{(k)}(\rho_i\xi_i) - \omega(\rho_i\xi_i) = 0, f_i(\rho_i\xi_i^*)f_i^{(k)}(\rho_i\xi_i^*) - \omega(\rho_i\xi_i^*) = 0.$$

By the assumption in Theorem 1, $ff^{(k)}$ and $gg^{(k)}$ share ω IM for every pair of functions $f,g \in \mathcal{F}$. Then, for any integer r, it follows that

$$f_r(\rho_i \xi_i) f_r^{(k)}(\rho_i \xi_i) - \omega(\rho_i \xi_i) = 0, f_r(\rho_i \xi_i^*) f_r^{(k)}(\rho_i \xi_i^*) - \omega(\rho_i \xi_i^*) = 0.$$

We fix r and note that $\rho_i \xi_i \to 0$, $\rho_i \xi_i^* \to 0$ if $i \to \infty$. We get $f_r(0) f_r^{(k)}(0) = \omega(0) = 0$.

Since the zero of $f_r(z)f_r^{(k)}(z)-\omega(z)$ have no accumulation points for sufficiently large i, in fact we have $\rho_i\xi_i=\rho_i\xi_i^*=0$. Hence $\xi_i=\xi_i^*=0$. This contradicts with the facts that $\xi_i\in D_1$, $\xi_i^*\in D_2$, $D_1\cap D_2=\emptyset$. Therefore, \mathcal{F}_1 is normal at 0.

Case 1.2 There exists a subsequence of $\frac{z_i}{\rho_i}$, we may still denote it as $\frac{z_i}{\rho_i}$ such that $\frac{z_i}{\rho_i} \rightarrow \infty$. Then,

$$F_{i}^{(k)} = \begin{cases} f_{i}^{(k)}/z^{n} + \sum_{t=0}^{k-1} C_{k-t}(F_{i}^{(t)}(z)/z^{k-t}), & \text{if } n > k, \\ f_{i}^{(k)}/z^{n} + \sum_{t=0}^{k-n} C_{k-t}(F_{i}^{(t)}(z)/z^{k-t}), & \text{if } n \leq k, \end{cases}$$

$$(11)$$

where C_l , $l=i,2,\cdots,k$ are constant. Thus,

$$\rho_{i}^{-\frac{k}{2}}g_{i}^{(k)}(\xi) = F_{i}^{(k)}(z_{i} + \rho_{i}\xi) = \frac{f_{i}^{(k)}(z_{i} + \rho_{i}\xi)}{(z_{i} + \rho_{i}\xi)^{n}} + \frac{C_{1}}{z_{i} + \rho_{i}\xi}F_{i}^{(k-1)}(z_{i} + \rho_{i}\xi) + \dots + \frac{C_{k}}{(z_{i} + \rho_{i}\xi)^{k}}F_{i}(z_{i} + \rho_{i}\xi)$$
(12)

where $C_l = 0$, $l = n+1, \dots, k$, if $n \le k$. Obviously,

$$\lim_{i \to \infty} \frac{1}{h(z_i + \rho_i \xi)} = 1 \tag{13}$$

uniformly on compact subset of C. At the same time,

$$\lim_{l \to \infty} \frac{C_l \rho_n^l}{(z_i + \rho_i \xi)^l} = \lim_{l \to \infty} \frac{C_l}{(z_i / \rho_i + \xi)^l} = 0, l = 1, 2, \dots, k$$
(14)

uniformly on compact subset of C. By (12),(13) and (14), we have

$$\frac{f_i^{(k)}(z_i + \rho_i \xi)}{\omega(z_i + \rho_i \xi)} = \frac{f_i^{(k)}(z_i + \rho_i \xi)}{(z_i + \rho_i \xi)^n h(z_i + \rho_i \xi)} = \frac{1}{h(z_i + \rho_i \xi)} \left[\rho_i^{-\frac{k}{2}} g_i^{(k)}(\xi) - \frac{C_l \rho_i^{1 - \frac{k}{2}} g_i^{(k-1)}(\xi)}{z_i + \rho_i \xi} - \dots - \frac{C_l \rho_i^{\frac{k}{2}} g_i(\xi)}{(z_i + \rho_i \xi)^k} \right]$$
(15)

Thus,

$$\frac{f_{i}(z_{i}+\rho_{i}\xi)f_{i}^{(k)}(z_{i}+\rho_{i}\xi)}{\omega(z_{i}+\rho_{i}\xi)}-1 \rightarrow g(\xi)g^{(k)}(\xi)-1$$
(16)

spherically locally uniformly in $\mathbb{C} - \{\xi \mid g(\xi) = \infty\}$.

If $gg^{(k)}\equiv 1$, then g has no zeros. Of course, g also has no poles. Since g is a non-constant meromorphic function of order at most 2, then there exist constants c_i such that $(c_1,c_2)\neq (0,0)$, and $g(\xi)=e^{c_0+c_1\xi+c_2\xi^2}$. Obviously, this is contrary to the case $gg^{(k)}\equiv 1$. Hence $gg^{(k)}\not\equiv 1$. From Lemma 2, Lemma 3 and Lemma 4, we get $g(\xi)g^{(k)}(\xi)-1$ has two distinct zeros at least.

Let ξ_1 and ξ_1^* be two distinct zeros of $g(\xi)g^{(k)}(\xi)-1$.

We choose a positive number σ small enough such that $D_1 \cap D_2 = \emptyset$ and such that $g(\xi)g^{(k)}(\xi) - 1$ has no other zeros in $D_1 \cup D_2$ except for ξ_1 and ξ_1^* , where

$$D_1 = \{ \xi \in \mathbb{C} \mid |\xi - \xi_1| < \sigma \}, D_2 = \{ \xi \in \mathbb{C} \mid |\xi - \xi_1^*| < \sigma \}$$

$$\tag{17}$$

By Hurwitz's theorem, for sufficiently large i there exist points $\zeta_i \in D_1, \zeta_i^* \in D_2$ such that Similar to the proof of Case 1.1, we get a contradiction. Therefore, \mathcal{F}_1 is normal at 0.

It remains to prove that F is normal at origin. Suppose f_{jk} be a sequence of functions in F. Since F_1 is normal at 0, there exists $\Delta_r = \{z : |z| < r\}$, F_1 is normal on Δ_r , then there exist $\delta < \frac{r}{2}$ such that F_{jk} uniformly converges to a meromorphic function u(z) or ∞ on $\Delta_{2\delta}$. Noting $F_{jk}(0) = \infty$, we deduce that exists positive

constant R such that $|F_{jk}| \ge R$ for all $z \in \Delta_{\delta}$. Thus, $f_{jk} \ne 0$ for all $z \in \Delta_{\delta}$ and for all k. Therefore, $1/f_{jk}$ is analytic in Δ_{δ} . Therefore, we have

$$\left|\frac{1}{f_{jk}(z)}\right| = \left|\frac{1}{F_{jk}(z)} \frac{1}{|z|^n}\right| \leq R \frac{2^n}{\delta^n}, |z| = \frac{\delta}{2}.$$
 (18)

By Montel's Theorem, F is normal at z=0.

Case 2 If $\omega(z_0) \neq 0$. Suppose that F is not normal at z_0 . By Lemma 1, there exist points $z_n \rightarrow z_0$, $\rho_n \rightarrow 0$, $f_n \rightarrow F$ such that $\rho_n^{-\frac{k}{2}} f_n(z_n + \rho_n \xi) \rightarrow g(\xi)$ spherically locally uniformly in \mathbb{C} , $g(\xi)$ is a nonconstant meromorphic function in \mathbb{C} , and $g^{\sharp}(\xi) \leq 1$. Moreover, the order of $g(\xi)$ is not greater than 2.

Since for any $f \in \mathcal{F}$, the multiplicity of zeros of f is $\max\{m+k, m+1+k/2\}$ at least, then the multiplicity of zeros of g is $\max\{m+k, m+1+k/2\}$ at least.

Thus, from Lemma 2, Lemma 3 and Lemma 4, we get $gg^{(k)} - \omega(z_0) \not\equiv 0$, and $gg^{(k)} - \omega(z_0)$ has two distinct zeros at least. Similar to the proof of Case 1.1, we get a contradiction. Thus, \mathcal{F} is normal at z_0 . Theorem 1 is proved completely.

References:

- [1] Yang L. Value distribution theory [M]. Berlin: Springer, 1993
- [2] Schi J. Normal Families M. Berlin: Springer-Verlag, 1993.
- [3] Gu Y X, Pang X C, Fang M L. Theory of normal families and its application[M]. Beijing: Science Press, 2007.
- [4] Hayman W K. Meromorphic functions[M]. Oxford: Clarendon Press. 1964.
- [5] Yang C C, Yi H X. Uniqueness theory of meromorphic functions[M]. Dordrecht: Kluwer, 2003.
- [6] Fang M L, Zalcman L. Normality criteria of meromorphic functions sharing one value[J]. J Aust Math Soc, 2004, 76: 141-150.

- [7] Meng D W, Hu P C. A note on normality and shared values [J]. J Math Anal Appl, 2011, 381:724-731.
- [8] Zeng C P. Normality and shared values with multiple zeros [J]. J Math Anal Appl, 2012, 394:683-686.
- [9] Zalcman L. Normal families: new perspectives[J]. Bull Amer Math Soc, 1998, 35:215-230.
- [10] Pang X C. Normality conditions for dierential polynomials [J]. Kexue Tongbao, 1988, 33:1690-1693.
- [11] Meng D W, Hu P C. Normality criteria of meromorphic functions sharing one value[J]. J Math Anal Appl, 2011, 381:724-731.

亚纯函数分担全纯函数的正规族

吴 春

(重庆师范大学 数学学院, 重庆 401331)

摘要:主要研究了亚纯函数分担全纯函数的正规族问题,证明了:如果 F 是区域 D 上的亚纯函数, $k(\geqslant 1)$, $m(\geqslant 0)$ 为两个整数, $\omega \not\equiv 0$ 为一个全纯函数,在 D 内其零点的重级为 m。如果对任意的 $f \in F$,f 的所有零点及极点的重级至少为 $\max\{m+k,m+1+k/2\}$,且对任意的 f, $g \in F$ 都有 $ff^{(k)}$, $gg^{(k)}$ IM 分担 ω ,则 F 在 D 正规。

关键词:亚纯函数;正规族;全纯函数

(责任编辑 黄 颖)