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Normal Criteria of Meromorphic Functions Concerning
Shared a Holomophic Function
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Abstract: In this paper, we study the normality criterion concerning shared a holomorphic function. Let F be a family of
meromorphic functions defined in D, let #(=1), m(=0) be two integer, and let @20 be a holomorphic function with
zeros of multiplicity m in D. If, for any f€ F . the multiplicity of all zeros and poles of f is at least max{m+k, m+1+%/2},
and if ff* ,gg™® share w IM for every pair of functions f,g€ F , then F is normal in D.
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1 Introduction and main result

Let D be a domain in C, and F be a family of meromorphic functions defined in a domain D. F is said to
be normal in D, in the sense of Montel, if for any sequence { f,} C F , there exists a subsequence {f,,, } such
that /., converges spherically locally uniformly in D, to a meromorphic function or ot

Lef g(2) be a meromorphic function, a be a finite complex number. If f(2) and g(z) assume the same ze-
ros, then we say that share ¢ IM (ignoring multiplicity)™*%!,

In 2004, Fang and Zaleman"* got the following results.

Theorem A Suppose that £ is a positive integer and a7 0 is a finite complex number. Let F be a family of
meromorphic functions defined in a domain D. If for each pair of functions f,.g€ F , f and g share 0, f*’ and
g share @ IM in D, and the zeros of f are of multiplicity =£+2, then F is normal in D.

In 2011, Meng"" proved the following result.

Theorem B Take a positive integer £ and a non-zero complex number a. Let F be a family of meromor-
phic functions in a domain DCC such that each f€ F has only zeros of multiplicity at least £+ 1. For each pair
(f.g)€ Fif ff* and gg share a IM, then F is normal in D.

Theorem C Take a positive integer £==2 and a non-zero complex number a. Let F be a family of holomor-
phic functions in a domain DCC such that each f €& F has only zeros of multiplicity at least k. For each pair
(f,g)€ F ,if ff*® and gg¥’ share a IM, then F is normal in D.

In 2012, Zeng'™ proved the following result.

Theorem D Let £ be a positive integer, a(7#0) and b be two finite values. Let F be a family of meromor-
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phic functions defined in D, all of whose zeros have multiplicity at least £ and £’ (2) =b when f(2)=0. If for
each pair of functions f and g in F , ff* and gg’ share a, then F is normal in D.

It is natural to ask whether there exist normality theorems corresponding to Theorem B if a is a function?
In this paper, we study the problem and obtain the following theorem.

Theorem 1 Let F be a family of meromorphic functions dened in D, let #(=1), m(=0) be two integer,
and let @0 be a holomorphic function with zeros of multiplicity m in D. If, for any f€ F , the multiplicity of
all zeros and poles of f is at least max{m+k,m+1+k/2}, and if ff* ., gg share w IM for every pair of func-
tions f,g& F , then F is normal in D.

Corollary 1 Let F be a family of holomorphic functions defined in D, let k(=1), m(=0) be two integer,
and let w20 be a holomorphic function with zeros of multiplicity m in D. If, for any f€ F , f has only zeros

> share w IM for every pair of functions f,g€ F , then F is nor-

of multiplicity m+£ at least, and if ff**, gg“
mal in D.

Corollary 2 Let F be a family of holomorphic functions defined in D, let #(=1), m(=0) be two integer,
and let @20 be a holomorphic function with zeros of multiplicity m in D. If, for any f&€ F, f has only zeros
of multiplicity m—+*# at least, and ff*’ Zw(z), then Fis normal in D.

Corollary 3 Let F be a family of meromorphic functions defined in D, let 2(=1), m(=0) be two inte-
ger, and let @0 be a holomorphic function with zeros of multiplicity m in D. If, for any f€ F , the multiplic-
ity of all zeros and poles of f is at least max{m—+k,m+1+£/2}, and ff*¥ #w(z), then F is normal in D.

Remark Clearly, when m= 0, Theorem 1 and Corollary 1 extends Theorem B and C.

2 Some lemmas

Lemma 1(Zalcman’s Lemma)™'  Let F be a family of meromorphic functions in the unit disc A and a be

a real number satisfying —1<Za<C1. Then if F is not normal at a point 2, € A, there exist, for each —1<la<1:

1) a real number », »<<1; 2) points z,, \z,, <{r; 3) positive numbers p, ,‘o,,90+; 4) functions f,, f,.€ F,

such that g, (&) :f,,(z,,j‘ &)

n

, spherically uniformly on compact subsets of C, where g(&) is a non-constant

meromorphic function and g (6)<{g*® (0)=1. Moreover, the order of g is not greater than 2.

By using the method of Lemma 2. 6 in Meng'"”

, we have the following LLemmas.

Lemma 2 Let f be a transcendental meromorphic function whose zeros have multiplicity at least k£, and
let p(2)(320) be a polynomial. Then ff — p(2) has infinitely many zeros.

Lemma 3 Let p(2)=a,z”" +a, 12" '+ +-+a z+a, be a polynomial, where a,, (#0),a, 1, ,a, are
constants. Let =1 be an integer, if f be a nonconstant polynomial, and all the zeros of f have multiplicity
m+k at least, then ff — p(2) has at least two distinct zeros.

Proof Since f is a non-constant polynomial with zeros of multiplicity m +£ at least, thus deg (ff*)>
deg p(2), then ff” — p(2) has at least one zero.

If /£ — p(2) has only one zero z,. We may assume ff* —p(2) =A(z—=z,)', where A is a non-zero con-
stant, [ is a positive integer. Then, [=deg (ff**)>m-+1, therefore,

(ffPHY —AI(U—1)(U—m+1D)(z—2) "=a, * m! F#0,
ffeYP —=ALU—1D) - (U—m) (x—=z) "' =0,

W+ " Since f is a non-constant polynomial with zeros of multiplicity m-+#k

thus 2, is the unique zero of (ff
at least, then 2, is a zero of f, thus (ff*® )"’ (z,) =0, it contradicts with (ff* )" (2,)=a,, * m! #0. Thus,
ff*® —p(2) has at least two distinct zeros.

Lemma 4 Let / be a nonconstant rational function whose zeros and poles have multiplicity at least
m-+1-+k/2, k be a positive integer and p(z) be a non-zero polynomial of degree m, then ff” — p(z) has at

least two distinct zeros.
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Proof Let

(z—a)" e (z—a)"

(z—=B))" e (z— B
Where A is a non-zero constant and m;, =m+1+k/2Gi=1,2,+,5) yn;,=m+1+k/2G=1,2,,1).
Moreover, we denote
mytm, et =M=Gn+1+kE/2)son oo, =N=Gn+1+k/2)t. (2)
By (1), we obtain

(D

f=A

(z—a))" Fe(z—a)™ "8 (2)

® _
f (z)=A (Z_ﬁl)"1+k‘”(2_ﬁ,)”‘+k ’ (3
where g(2) is a polynomial of degree at most £(s+¢—1). Thus (1) together with (3) imply
(z—a)) Feee(z—a,)™ tg(2)
D) (L) — A2 5
ff (z)=A (Ziﬂl)Zul{k...(ziﬂz)Zu[{k ’ (4
Differentiate both sides of (4), we obtain
. , (z—a))? e (g—a )T g ()
ff* ()= (zl_‘81)2nl+k+l."(z_ﬁ)ZnIJrl:All , (5
where g, (2) is a polynomial of degree at most (k+1)(s+¢—1).
. (z—a))? e (g—a ) g (2)
(ff(k)(Z))( V= (;751)ZulV/e‘Fmvl...(zi‘B)2111‘#/\"*’1/1*11 ’ (6)
where g,,+1(2) is a polynomial of degree at most (k+m—+1)(s+t—1).
Next, we discuss two cases.
Case 1 If ff® —p(2) has a unique zero z,, then let
B (z—=z,)!
ff<k> (Z) _p(Z) = (Z_‘Bl )2nl+k cee (L_‘Bt )2111+1€ ’ (7)
where B is a non-zero constant, [ is a positive integer.
Here, we discuss two subcases.
Case 1.1 Suppose m=[. Differentiate both sides of (7), we have
(ff(k)(Z))(711+1)_p(/;z+1)(2): CQ»1+1(Z) (8)

(z_ﬁl )2711+kA717+l ...(z_IBI)ZII[Ak+1n+l ’
where Q,-1 (2)=U—2N—tk) ([—2N—tk—1)+([—2N—th—m)z" V=" 4 oo 4-p, 2+ b, is a polynomial,
b, ,b, are constants.

Comparing (4) with (7), by m=[, we have 2N-+tk+m=deg g+2M—sk<k(s+t—1)+2M—sk, hence,
2(M—N)=m-+k>0. From (6) and (8), we get 2M—s(k+m-+1)<(m+1)t—Gn—1[+1). Hence

. ) . (m+1N (kt+m+1)M
m—Il+1<(m+Dt+sk+m+1) 2M<7n+1+/e/2+ 1tk

(m+1DM JF(/cherl)Z\/[
m+1+k/2 m+1-+k/2

i.e. ,.—m>1, it contradicts with m=/.

—2M<<

—2M=0.

Case 1.2 Suppose m<<[. Differentiate both sides of (7), we have
(z—z)" " 'R(2)

(Z_ﬁl )21;1+k7m+1 .”(z_lg )211[7lz+m+1 ’
where R(2)=B(—2N—tk)(—2N—tk—1)++([—2N—thk—m)z" V' 44, z+¢, is a polynomial, ¢, ,c, are

constants.

(ff‘(k)(Z))(uﬂrl)ip(mﬂrl)(z): (9)

Next, we discuss three subcases.
Case 1.2.1 If [<2N-+tk+m. By(4),(7), similar to the proof of Subcase 1.1, we get M>>N. From
(6),(9), we have 2M—s(k+m+1D<(m+1Dt. 1. e. ,

< (m+1N (k+m+1)M<
TmA1+E/2 0 mH1+E/2 TmE1+E/2 T m+14ER/2

(m+1DOM | Gtm+DM

IM<(m+Dit+stk+m+1) =2M,
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which is impossible.
Case 1.2.2 TIf [=2N-+tk+m. Suppose M>N, by (6),(9), we get 2M—s(k+m+D<<(Gn+D¢z ie.,

_ (m+DN | b+m+DM _ (m+DM | (k+m+1M
2M<(’”+1>"+*‘(/“L”’H)<7n+1+/e/2+ 1T k2 m 1tk m 1 Tk/2

=2M,

which is contradiction.
Thus, M<XN. By (6), (9), we obtain [—m—a<<(k+m+1)(s+¢t—1). Since [=2N+tk-+m, then
IN—1+th=1—m—1<(k+m+1)(s+r—1), i.e.

M(k+m+1)+ NGn+1)
m+1+£k/2 m+1-+£k/2

IN<(Etm+DGHe—D+1—th<<stk+m+1D+tm+1H<< <2N,

which is contradiction.
Case 1.2.3 If [>2N-+tk+m. Suppose M<XN, by (4), (7), we have [SC2N+tk+m, which is a contra-
diction. Thus, M>N. From (6), (9), we have 2M—s(k+m+1)<t(m+1). Then,

M(/e+m+1)+ N(Gm—+1)
m+1-+k/2 m+1-+k/2

IM<s(Ck+m+1)+t(m+1)< <2M,

which is impossible.
Case 2 If ff® —p(2) has no zero, then /=0 for (7). Proceeding as in the proof for case 1, we also ob-
tain a contradiction.

Therefore, Lemma 4 is proved complectly.

3 Proof of theorem

3.1 Proof of Theorem 1
For any point 2, € D, either w(z,) =0 or w(z,)#0.
Next, we consider the following two cases.

Case 1 If w(z,)=0. We may assume 2, =0, Then, w(z)=2"h(2) where n=>1 is a positive integer and

h(z) is holomorphic in D with h(0)=1 for D. Let F,= {F]- _ /i) s fi€EF } . We shall prove F, is normal at

Z”

origin. Suppose not, by Lemma 1, there exist points z;—>0, positive numbers p,—>0 and F; € F, such that

k . . . . .
g:(&) =p;2 F(z;,+p&) converges uniformly to a non-constant meromorphic function g(&) in C with respect to
the spherical metric. Moreover, g(&) is of order at most 2.
Now, we distinguish two cases.

~ . Zi . . Zi Zi . -
Case 1.1 There exists a subsequence of =, we may still denote it as — such that = —a,a is a finite

i i i

complex number. We have

_[id (p€)"F, (z +p (57;’7]]
orte ()" (o) %
spherically locally uniformly in C. Hence,
(&) [iC&) [ () —w(pi)
o P

Gi (9 &g (6—a)=g(&),

G (OGP (& — —g(©OgW (e —¢&

spherically locally uniformly in C.

For any f€ F , he multiplicity of every zero of f is max{m-+tk,m+1+£%/2} at least, the multiplicity of
every zero of g is max {m+tk.m+1+£k/2} at least, from Lemma 2~4, we get g (&) g" (&) —& 320, and
g (&) g™ (&) —&" has two distinct zeros at least.

Let & and & be two distinct zeros of g(&) g™ (&) —¢&",

We choose a positive number & small enough such that D; D, =) and such that g(&)g® (&) —&" has no

other zeros in D, UD, except for & and & , where
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D,={s€c||s=& <o} .D.={eeC] |e—¢ | <o), (10)

By Hurwitz’s theorem, for sufficiently large i there exist points & € D, ,&" € D, such that
fiCoED [ (o) —w(piE) =0, [ (067 ) [P (o0& ) —w(p& ) =0.

k)

By the assumption in Theorem 1,ff* and gg"” share w IM for every pair of functions f,g€ F. Then, for any

integer r, it follows that
Fr (oD P () —w(o€) =0, f,(p& ) [P (0] ) —w(pé )=0.
We fix » and note that p,&;—>0,p,&" =0 if i—cc, We get f,(0) f1* (0) —w(0)=0.
Since the zero of f,(2) f’ (2) —w(2) have no accumulation points for sufficiently large 7, in fact we have
0 = €l = 0. Hence & =& = 0. This contradicts with the facts that & € D,,& € D,.D, 1 D, = .

Therefore, F, is normal at 0.

Case 1.2 There exists a subsequence of [%, we may still denote it as ‘% such that ?90@ Then,
prynn DG (FP ) /2D i ks
Fi? = (1)

k—n

EIEEED VRISV RIS

where C,,[=17,2,+*,k are constant. Thus,

_E . S (ziFp8) C, - C,
LB (E)=F® (5 4 pe)y=2i (ZiTp D (o )b S B,
o gV (O =F® (2, +p8) et p) +21+‘015F, (z;+p:8)+ +(z[+p,s>kF’<z’+P’$) 12)
where C,=0,l=n+1,,k, if <lk. Obviously,
. 1
hm G ot ! (s
uniformly on compact subset of C. At the same time,
~ ~
lim —S0 G =12,k (14)

S Gite®) i (/o)
uniformly on compact subset of C. By (12),(13) and (14), we have

SPGAps) | [P tpd) [15g,z)(s)_czpl5g5k”<S>_,,,_Czp§g,(s>} (5
w(z; +p8) (z;+08)"h (z;+p8)  hiz,+p8) o8 2, +pé (z;+0:8)"

Thus,

fi(zit ) 1Y (zi+p:8)
a)(z,‘hof)

spherically locally uniformly in C— {&] g (&) =oo}.

—1>g(&g" (& —1 (16)

If gg™” =1, then g has no zeros. Of course, g also has no poles. Since g is a non-constant meromorphic
function of order at most 2, then there exist constants ¢; such that (¢;,¢,)7#(0,0), and g(&) :e"“ﬁlﬁ‘?sz. Ob-
viously, this is contrary to the case gg®”’ =1. Hence gg®’ Z1. From Lemma 2, Lemma 3 and Lemma 4, we
get g(&) g™ (&) —1 has two distinct zeros at least.

Let & and & be two distinct zeros of g(& g™ (& —1.

We choose a positive number ¢ small enough such that D; D, =) and such that g(&) g® (&) —1 has no
other zeros in D, U D, except for & and & , where

D, ={£€C| |6—& |<s}.D,={c€C||—¢ |<o} (17
By Hurwitz’s theorem, for sufficiently large i there exist points ;€ D, ,{’ € D, such that

Similar to the proof of Case 1.1, we get a contradiction. Therefore, F, is normal at 0.

It remains to prove that F is normal at origin. Suppose f; be a sequence of functions in F . Since F, is
. . . r .
normal at 0, there exists A, = {z: ‘z ‘ <{r}, F, is normal on A,, then there exist é‘<? such that Fj, uniformly

converges to a meromorphic function u(z) or © on A,;. Noting Fj (0) =°°, we deduce that exists positive
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constant R such that | F, | =R for all z€A,. Thus, f; 70 for all z€ A, and for all k. Therefore, 1/f; is ana-

lytic in A;. Therefore, we have

0

‘ 1 ‘:‘ 1
f»,-/z(z) ij(z) ‘Z

By Montel’s Theorem, F is normal at x=0.
Case 2

<R§7,\z\=? (18)

n

If w(z,)70. Suppose that F is not normal at z,. By Lemma 1, there exist points 2,2y, 0,0,

f.—> F such that p;éf',, (2, Tp.8)—>g (& spherically locally uniformly in C, g(&) is a nonconstant meromorphic

function in C, and g% (§)<{1. Moreover, the order of g(€) is not greater than 2.

Since for any f€ F , the multiplicity of zeros of f is max{m—+k,m+1+£%/2} at least, then the multiplici-

ty of zeros of g is max{m+k,m+1+k/2} at least.

Thus, from Lemma 2, Lemma 3 and Lemma 4, we get gg* —w(z,)7Z0, and gg™ —w(z,) has two dis-

tinct zeros at least. Similar to the proof of Case 1.1, we get a contradiction. Thus, F is normal at z,. Theo-

rem 1 is proved completely.
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