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Modified Shifted Laplace Preconditioners for

Symmetric Complex Linear Systems
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Abstract: Modified shifted Laplace preconditioners are introduced to the solution of complex linear systems, which are fre-
quently indefinite and large, it is difficult to solve iteratively. The spectral characteristics of the preconditioners are stud-
ied, and we find that, all eigenvalues of the preconditioned matrices are located on one circle and strongly clustered. Nu-
merical experiments on the Helmholtz equations are presented to illustrate the numerical effectiveness of our precondition-
ers.
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1 Introduction

Consider the nonsingular complex linear systems as follows:

Cr=b,with C=A+IiB, (@D
Where i=+/—1,A,BER"",A" =A,B" =B. Then,we can find that the matrix C is symmetric, but non-

Hermitian. Complex systems arise in a number of applications,such as time-harmonic wave propagations,scat-
tering phenomena which is arisen in optical and acoustic problems. In our numerical experiments, we use the
examples of the Helmholtz equation which is discretized by finite difference.

The coefficient matrices are large and usually sparse, Krylov subspace methods are better choice when a
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good preconditioner is introduced. In this paper, modified shifted Laplace preconditioners are introduced to im-
prove the convergence of the Krylov subspace methods.

Some effective preconditioners for complex linear systems are introduced in [ 1-4]. Axelsson, Kucherov'"
and Benzi*" presented some effective preconditioners based the 2n X 2n equivalent real formulations instead of
the nXn complex systems.

Laird™! took the Laplace operator perturbed by a real-valued linear term as a preconditioner and improved
the convergence rate of iterative methods. In [ 5-8],the class of shifted Laplace preconditioners are further gen-
eralized by also considering general complex shifts. The spectral characteristics of the shifted Laplace precondi-
tioners are studied by Van Gijzen,Erlangga, Vuik in [8],and we can find that these preconditioners are effec-
tive and simple to construct.

Recently,based on the Hermitian and skew-Hermitian parts of the coefficient matrix C,when A is a sym-
metric positive semidefinite matrix and B is a symmetric positive definite matrix, or A is a symmetric positive
definite matrix and B is a symmetric positive semidefinite matrix,Bai et al. proposed in [13] a modified Hermi-
tian and skew-Hermitian splitting (MHSS) iteration method, which is more efficient than the HSS iteration
method™" for solving the complex system (1). It has been proved that the MHSS iteration method is conver-
gent unconditionally in [137]. In[15-17 ], the authors gave some variants of MHSS and established the conver-
gence theories for the these iteration method under suitable conditions.

This paper gives the class of preconditioners just from an algebraic point of view, and is based on the work
of [5-8]. To distinguish it from the shifted Laplace preconditioners, we refer them as modified shifted Laplace
preconditioners.

In Section 2 of this paper, we will establish the modified shifted Laplace preconditioners and study the
spectral properties of the preconditioners for the complex linear systems. In Section 3 of this paper, we give

some numerical experiments on the Helmholtz equations. Finally, conclusions are obtained in Section 4.

2 The modified shifted Laplace preconditioners

In this paper, we consider the following preconditioned linear system:

P 'Cx=P 'b, (2)
where the preconditioner P is non-singular. The preconditioner is very important. Generally speaking, we
should choose the preconditioner P to let the condition number of the preconditioned matrix P 'C is less than
the condition number of the original matrix A, you can turn to [ 4] for more details about the preconditioner.

In [8], Van Gijzen, Erlangga, Vuik introduced a shifted Laplace preconditioner;
L+iC—=zM
to precondition the Helmholtz operator:

L+iC—z M.

When we turn to the complex linear systems of the form (1), we can rewrite the coefficient matrix as fol-
lows:

C=A+eB—(a—1)B=L—=z B, 3)
where L=A+aB, 2, =a—i=a, +if;» in this paper, we all choose a>0. Looking for a form of C, we consider
the preconditioner:

P=L—z,B, 4)
where z, =a; +if, » in order to distinguish it from the shifted Laplace preconditioners for Helmholtz opera-
tor, we refer them as modified shifted Laplace preconditioners. We can find that these preconditioners are still

easy to construct.
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In [12], for the complex linear system:

(A—h*pI+ihqDx=0b,
if we choose a, :%’ B=—1, then, we can get the preconditioner:

P,=A+h"(a—p)I+ih’ql(a=>p),
which is introduced in [12]. So,we can consider the modified shifted Laplace preconditioners as a generation of
the preconditioner in [127]. In our numerical experiments, we will compare the results with the results of the
modified shifted Laplace preconditioners.
In the following Theorem, we will discuss the spectrum results of the preconditioned matrix P~ 'C when B
is a symmetric, real and nonsingular matrix, the proof of the Theorem is similar to the proof in [ 8].
Theorem 1 Let 3,70, and assume that L is a symmetric real matrix, B is a symmetric, real and nonsin-

gular matrix. Then,the eigenvalues A=21"+id'of P"'A are located on the circle given by

1»7MJZ ( 1»7012*0’022(ﬁz_ﬁl)z+(a2—al)2
( 2, +1A 25, (2" ) (5)
the center ¢ of this circle is

_ ﬁz+ﬁ1 012"‘“1)

¢ ( 28, 28, , (6)
and the radius R is

_ (‘82_31)2+(02_al)2
o [ER TG .

Proof Let A=A"+id" be an eigenvalue of P~'A with eigenvector x. B is a symmetric, real and nonsingular

matrix,then we can get

(L—z:B)x=A(L—=z,B)x, (8
and it is easy to see that L—z,B and L— 2, B share the same eigenvectors, which are the eigenvectors of
Lx =wBx.
Substituting this into (8) yields
w—z =Aw—=z), (D)

and we know that, A=2"+iA", 2, =a, +if » 2 =a; +iB:, substituting this into (9) yields
W™ a =" (w*az ) +/1iﬂg
(10)
7‘81 - 7AVﬁz +/11 (wiﬂz )
Then, by direct computation, we can get
( 7__32 +ﬁl)2+(/11v_az_alj2:(ﬁz 7ﬁ1 )2+(azial )2
262 2,82 (Zﬁg)z ’

The center of the circle can also be written as

21 Z2
c= —
Z9 Z9
and the radius as
Z2 Z1
R= —
TR

Theorem 2  Let 3, =0, and assume that L is a symmetric real matrix,B is a symmetric, real and nonsin-
gular matrix. Then,the eigenvalues A=A"+i1" of P 'A are located on the circle given by
—BA + (o, —a))A +6, =0
Proof Let 8,=0, from (10) and then by direct computation, we can get
—BA +(a; —a)A 5 =0.
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Remark If the complex linear system is nonsymmetric or B is singular, the modified shifted Laplace pre-
conditioner can still be applied to this case, but we can’t get the similar spectrum results of the preconditioned

matrix,see example 2.

3 Some considerations

In [ 8],the authors give the choice of the optimal shift,that is:
2, = —1 ‘ 2 ‘ ,

in our test, we also give the choice. Another choice is the constant a, if a=>0, the preconditioner P corresponds
to using the original operator C, which means that performing the preconditioning operation is as hard as sol-
ving the original system. So, we should choose a suitable a. In our numerical experiments, we all take a=1.

The basic algorithm of Krylov subspace methods is the conjugate gradient method (CG), only three vec-
tors is used in memory. When the coefficient matrix C is symmetric, and positive definite, the conjugate gradi-
ent method work well. Otherwise, the conjugate gradient method may break down. GMRES has the advantage
that theoretically the algorithm does not break down unless convergence has been reached. The main problem
in GMRES is that, when the iteration number increases, the amount of storage also increases. Therefore, the
application of GMRES may be limited by the computer storage. To remedy this problem, a restarted version,
GMRES(m). In our numerical experiments, we all take the restarted GMRES(m).

4 Numerical examples

Helmholtz equations are very important in the wave propagation phenomena. Similar to the numerical ex-
periments in [ 4 |, based on the finite-difference discretization of the partial differential equation (PDE), two
types of model problems were considered:

—Au—putiqu=1F. (1)

All the numerical experiments were performed with Matlab 7. 0. In all of our runs we used a zero initial
guess and let r [,/ I ¥ | ,<<10 %, The algorithm
stop. The right-hand side vectors b=Ce,e=(1,1,++,1)". We will use preconditioned GMRES(10) to solve the

(k) (k)

to be the residual vector after #—¢h iteration. When | r

complex linear systems.

Example 1 We consider (11) on the 2D domain Q=1[0,1]X[0,1] with different values of p, ¢ and
boundary conditions, and we let p=>0,¢>>0.

We discretize these problems by finite differences using uniform m Xm grids, then, we can get the follow-
ing complex linear system which is nXn with n=m".

Cx=(T—hr*pI+ik’D)x=0b, (12)
when p=200, the diagonal matrix D has random entries in the interval (0,200). We can find that, A is indefi-
nite and B is positive definite. In this example, we change the preconditioner which is introduced in [12] to:

P, =A+h*(a—p)[+ik*qD ,a=200,
and give the modified shifted Laplace preconditioner:
P,=A—h*pl+h*gD+i|1—i|h*qD.
From fig. 1, we can get the results that the eigenvalues of P~' A are strongly clustered, and are located in
a circle, which are expected in Theorem 1.
From fig. 2, we can find that the modified shifted Laplace preconditioners perform well, and are more ef-
fective than the preconditioners which are introduced in [127.
From Tab. 1, we can see the iterations counts for different grids, we find that the convergence behavior of

this preconditioner is independent of the gridsize h.
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P=P1 1=1-1,22=—il1-il
Tab.1 GMRES iterations for different grids for example 1 9 - N 0.5 Z*k*‘lz e
Grid  No preconditioning P=P1  P=P?2 15t s ol &
+
X 5 L +h
10X10 55 27 14 1 . 05| +
20X 20 114 27 14 0.5+ + %
Hok -1 +
30X 30 186 29 15 0 . e e,
-0.5 0 0.5 1 -1 =05 0 05 1
40 X 40 275 28 14
z1=0.1-1,22=—10.1-il zl=1-1,22=il1-il
* oy oK
. : _ _ . + # N
Example 2 In this example, we let p=—200,q=0 008} 0.6 .
* £
and a boundary condition of the form 0.06 j " 041 +
0.04 1 % *
du * F 02 *
aerﬁu:O on {(1,y)[0<<y<<l}, 0.02 *m
n 0 T Ot . P, "PV— .
and Dirichlet boundary conditions are satisfied on the re- 0.95 1 1.05 04 06 08 1 12
maining three sides of the unit square, with the complex Fig.1 Spectrum of A and P™' A on 30X 30 grid
function B chosen so as to make the imaginary part of C
indefinite. Taking suitable 8, we can get the complex lin- 0
ear system of the form (12), where the diagonal entries 3
of D is list as follows: 4 No preconditioning
_ - —+— P=P1
(71)J71100/}ly When i1=m o p=pP2
dl‘F(_;*l)m = , -6
0, else
. . . .. . . -8 ¢
i,j=1,+,m. Using the five point finite difference to dis-
cretize the Helmholtz equation (11) results in the follow- ~107
ing linear system: -12+
Cr=(T—h*pI+iD)x=(A+iB)x=0b. (13)  _14¢
At this case, the matrix A is non-singular and posi- || ¢, ‘ ‘ ‘

tive definite, the matrix B is singular and indefinite. In
this example, we give the modified shifted Laplace precon-

ditioner:

20 40 60 80 100 120 140 160 180 200

Fig.2 Convergence curve and total numbers of

GMRES iterations on 30X 30 grid for example 1

P,=A+B+i|1—i|B.

From Fig. 3 and Tab. 2, we can find that the modified shifted Laplace preconditioners can still be applied

to the case when B is singular.

—e— No preconditioning

—&— P=P3

-10

Tab. 2 GMRES iterations for different grids for example 2
Grid No preconditioning P=P3
10X 10 23 5
20X 20 43 6
30X 30 57 8
40X 40 73 8

-12+ |

14| ¢ \

-16 N I I I 1 ]
0 10 20 30 40 50 60
Fig. 3 Convergence curve and total numbers of

GMRES iterations on 30X 30 grid for example 2

5 Conclusion

In this paper, we introduce the modified shifted La-
place preconditioners, and we give some properties about
it, then, we give numerical example to illustrate the effi-

cient of our method.
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