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In recent years, study on the theory of vector optimization has been paid more attentions. So far as there

. [1-3] . .
are a lot of fundamental and important research results . In particular, some scholars obtained some
characterizations of various kinds of solutions for vector optimization problems under some suitable generalized
.. [46]
convexity .

Approximate solutions have been playing an important role when there are no exact solutions for a class of
.. . . [l . .. . .. .
vector optimization problems. Loridan = initially introduced the concept of e-efficient solutions. Rong and

[s] . .. . . . .
Wu " introduced the concept of weakly e-efficient solutions and obtained some characterizations such as linear
scalarization theorem and Lagrange multiplier theorem.

With the development of various kinds of exact and approximate solutions, it becomes one meaningful

research subject that how to propose some unified solution concepts and obtain some new characterizations in a

e . . [9] .
unified framework for vector optimization problems. Chicco et al. ~ proposed the concepts of improvement set
and E-efficient solutions via improvement set and obtained some characterizations. E-efficiency includes some

known exact and approximate solutions as its special cases. Improvement set is close related to the free disposal

[10] . . . . .
set proposed by Debreu . As a kind of important tool, improvement set has been used extensively in vector
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optimization[nfl'ﬂ. Especially, Zhao et al."™ introduced the concept of weakly E-efficient solutions and established
some linear scalarization theorem and lagrange multiplier theorem under the nearly E-subconvexlikeness and the
corresponding alternative theorem.

It is worth noting that many solution concepts depend on the nonemptiness of the ordering cone in the
image space of a vector optimization problem. Hence, it is one meaningful and valuable research topic how to
introduce some new solution concepts and give some characterizations by means of some generalized interior
tools. Some classical tools generalized interiors such as algebraic interior, relatively topological interior and
relatively algebraic interior . Some scholars also have proposed some new solution concepts via generalized
interiors of the ordering cone and obtained some characterizations™ -

Motivated by the works of [5,9,13, 18], this article focus on establishing an alternative theorem with
nearly E-subconvexlikeness of set-valued maps via improvement set and algebraic interior in a general real
linear space and giving the linear scalarization theorem and lLLagrange multiplier theorem for weakly E-efficient
solutions via improvement set and algebraic interior. It also presents some examples to illustrate the main
assumption conditions and results. The related research works improve and generalize some known results in

the literatures.
1 Preliminaries

Let X,Y and Z be three real linear spaces, Y and Z  be the linear dual space of Y and Z respectively, R”
be the n-dimensional Euclidean space, R’ be the nonnegative orthant, R’ , be the positive orthant. For a
nonempty subset A in Y, the algebraic interior and vector closure of A denoted by corA and vclA are
respectively defined as
corA={y €Y | VYh €Y, Je>0,Vt €[0,e]l,y+th € A},
velA={y €Y | dnh €Y, Ve>0,dt € (0,e],y+th € A}.
A is said to be proper il A#(J and A #Y. Moreover, the cone hull and the positive dual cone of A are
respectively defined as coneA ={aa | Ya=0,Ya €A} ;A ={p€Y [{y, y)=0,VyEA}.
Let K be a proper convex cone in Y. A is said to be a free disposal set with respect to K if A+ K=A.
Definition 1~ """

respect to K, then E is said to be an improvement set with respect to K.

Lemma 1" Let ACY and BCY be two nonempty convex sets. If corA #(J and corA N B=(), then
there exist #€Y \{0,. } and « € R such that (z,a)<<a<(p, b),YVa €A, VHEB and (y,a)<a, Ya € corA.

Let ECY and K be a proper convex cone. If 0¢ E and E is a free disposal set with

Lemma 2" Let KCY be a proper convex cone with nonempty algebraic interior. If & € corK and
2 €K '\{0,. 1}, then (u, k)=>0.

2 Alternative theorem with nearly E-subconvexlikeness

In this section introduces the concept of nearly E-subconvexlikeness of set-valued maps by using algebraic
interior, vector closure and improvement set in a real linear space. Furthermore, this paper will establish the
alternative theorem with nearly E-subconvexlikeness.

Lemma 3 Let KCY be a proper convex cone with nonempty algebraic interior. If ECY is a free disposal
set with respect to K, then corE =F +corK .

Proof Let y€ E+corK, then there exist e € E and & € corK such that y=e+k. From the definition of
algebraic interior, it can obtain that for any h €Y, there exists ¢ >0 such that £ +th € K for all t €[0,e ].
Therefore, y+th=e+k+thEE-+K=E. Hence y € corE and it follows that corE #().

Conversely, let e € corE and k € corK, then from the definition of algebraic interior, there exists e >0
such that e —ek € E. Therefore, e € E+ekCE +corK .

Remark 1 From Lemma 3, it is clear that corK #(J implies corE #({J.

Lemma 4 Let K CY be a proper convex cone with nonempty topological interior. If ECY is a free

disposal set with respect to K, then vcl(coneE)=cl(coneE).
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Proof In fact, it is clear that vcl(coneE)Ccl(coneE). In the following, it only need to prove

cl(coneE) C vel(coneE) . @D)
Let e€ cl(coneE) and h € intK . For any given € >0, taking t =¢, then th € intK . Therefore,

e +th € cl(coneE) + intK =cl(coneE\{0}) + intK =coneE\{0} + intK.
Hence there exist A,, 1,0, ¢/ €E and b €intK such that
/7 A’) 7 .
e+th=2Ae +A,k=2, (e’ +/1_kj € A, (e +intK).
1

Therefore, from E is a free disposal set with respect to K, there have e +th € coneE, which implies

e € vcl(coneE) and so (1) does hold.

Remark 2 If E is not a free disposal set with respect to K in Lemma 4, then the conclusion is not
necessarily valid. The following example illustrates it.

Example 1 Let Y=R’, K ZRS‘ and E={(z, ,x,,x,) € R’ | 1=Z2x,>0,x, =17T ,x,=1}. Clearly, K is a
proper convex cone with nonempty topological interior, but E is not a free disposal set with respect to K.
Moreover, coneE={(x, ,x,,x,) € R’ |1>11>O X, =17T yUJ{0}. Take v,=(00,0,1). It can verily that y,
€ cl(coneE) and y, & vel(coneE).

Remark 3 If intK =¢J in Lemma 4, then the conclusion also is not necessarily valid. The following
example illustrates it.

Example 2 Let Y=R', K={(y,,v,,y,,y,)ER [y, =y,=y,=0,y,2>0} and

E={((y, .5, v, 9) €ER' 1=y, >0y,=y].5,=1.y, =1}.
Clearly, K is a proper convex cone and E is a free disposal set with respect to K, but intK =(J. Moreover,
coneE = {(y,.y,.y,.3) €R' |y, =y, =y, >0.y,y,=y,) U {0}.
Take y,=(0,0,1,0). It can verify that y, € cl(coneE) and y, &€ vcl(coneE).

Remark 4 It is well-known that vclE =clE under the conditions that E is a convex set and intE # (.
From the proof of Lemma 4, it observes that vclE = clE also holds under the assumption conditions of
Lemma 4.

Motivated by the idea of nearly E-subconvexlikeness in a real separated locally convex topological linear

space proposed by Zhao et al.USJ, the paper propose the following notion of nearly E-subconvexlikeness via
algebraic interior and improvement set in a real linear space.

In the following, unless particularly stated, the paper assumes that K CY be a proper convex cone with
nonempty algebraic interior and ECY be an improvement set with respect to K .

Definition 2 Let SCX be a nonempty set and F:S—>2" be a set-valued map. F is said to be nearly E-
subconvexlike on S, if vel(cone(F(S)+E)) is a convex set.

Remark 5 If Y is a real separated locally convex topological linear space and K CY is a pointed closed

convex cone with nonempty topological interior, then Definition 1 coincides with Definition 3. 1 " n fact, it
only need to verify that
vel(cone(F(S) + E)) =cl(cone(F(S) +E)). (2)
Since E is an improvement set with respect to K, then F(S)+E+K=F(S)+E, i.e., F(S)+E is a free
disposal set with respect to K. Then it follows from Lemma 4 that (2) does hold.
For a nonempty set A inY, the support functional of A is defined as o, (y ’ )=§g143{<y Cowvby €Y.

Theorem 1 Let SCX be a nonempty set and F:S—>2" be nearly E-subconvexlike on S. Then one and
only one of the following statements is true: i) 32 €S, F(z) N (—corE)#J;ii) Ju€ K+\{ny by ) —
o p(u)=0, Yy€F(S).

Proof Assume that both i) and i) hold, then there exists x € S such that F(zx) (| —corE7#{J. It follows
from Lemma 3 that there exist y € F(x) and e € E such that y +e& —corK. Hence from LLemma 2 there have
(o yt+e)<<O, i e, (py y)<<dp, —e><E21{E)E<;1, e)=o_, (u). Therefore, (g, y> —0o_, () <0, which
contradicts to ii) .

If ) does not hold, then by Lemma 3, getting (F(S)+E) [ (—corK)=(J. Next, it first proves
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cone(F(S) +E) ) (—corK) =(J. 3
On the contrary, if cone(F(S)+E) () (—corK)#(J, then there exists y € Y\{0} such that y € cone(F(S)+E) and
y &€ —corK . Since cone(F(S)+E) and K are cones, then there exists A~>0 such that Ay € cone(F (S)+E)
and Ay € —corK, which is a contradiction and hence (3) does hold.
Furthermore, the following will show
vel(econe(F(S) +E)) N (—cortK) = 4)
On the contrary, assuming vel(cone(F(S)+E)) N (—corK)#(), then there exists y €Y such that y €
vel(cone(F(S)+E)) and y € —corK . Since y € vel(cone(F(S)+E)), then from the definition of vector
closure, it can obtain that there exists h €Y, such that for any given e, >0, there exists ¢, € (0 e, ] satisfying
y+i,h€cone(F(S)+E). Since y € —corK and corK =cor(corK), then there exists €,>0 such that y+¢,h €
—corK for any ¢, € [0,e,]. Let e =min{e,,e,}. Then there exists t+ € (0,e | satisfying y + th € cone
(F(S)+E) and y+th € —corK . This contradicts to cone(F(S)+E) N (—corK)={J.
Moreover, from the fact that F is nearly E-subconvexlike on S, it follows that vel(cone (F(S)+E)) is a
convex set. Hence by Lemma 1, there exists x€Y \{0,. } such that
(p,y +e+2ak) =0,Vy € F(S),Ve € E, Vk € corK, YA > 0. (5)
Let A—+co in (5), then (u, k)=>0, Y k€ corK . Hence {(y, £)=>0,Y k€K and so € K "\{0,. }. Moreover,
let A=0 in (5), then {p, y)={pu, —e), YV yEF(S),YeE€E. Therefore, {u, y>>}s€u7pE</z, ee)=oc_ (), Vy€&
F(S).
This implies ii) holds.
Remark 6 If Y is a real separated locally convex topological linear space, Y  is the topological dual space
of Y and KCY is a pointed closed convex cone with nonempty topological interior, then it is clear that above

Theorem 1 coincides with Theorem 3. 1% .

3 Scalarization

In this section will establish scalarization theorem of weakly E-efficient solutions for vector optimization
problems by using the alternative theorem with nearly E-subconvexlike set-valued map involving algebraic
interior. Consider the following vector optimization problem:

(VP) minF(x),
+€S

where SCX, S and F:S—>2" is a set-valued map with nonempty value.
Definition 3 A point x € S is called a weakly E-efficient solution of (VP) if there exists y, € F (x,) such
that (y, —corE) N F(S)=(J. The point pair (x,,y,) is called a weakly E-efficient point of (VP).

Consider the following scalar optimization problem: (VP) min{yx, F(2)), p €Y \{0,. }.
" ses

Definition 4" A point x, € S is called an optimal solution of (VP) with respect to E if there exists
v, €EF(x ) such that (g, y—y,)=0_, (), V2 €S, YVy€F(x). The point pair (x,,y,) is called an optimal
point of (VP) with respect to E.

Theorem 2 lLetx, €S, y, € F(x,) and F —y, be nearly E-subconvexlike on S. Then (x,,y,) is a
weakly E-efficient point of (VP) if and only il there exists € K+\{ny } such that (x,,y,) is an optimal point
of (VP), with respect to E.

Proof Assume that (&, ,y,) is a weakly E-efficient point of (VP), then (F(S)—y ) (1 (—corE)={].
Hence from Theorem 1, there exists # € K \{0,. } such that{y, y —y,> —0 . (u) =0, Vy € F(S).
Therefore, (u, y—y ) =0_, (), Y2 €S, VyEF(x).

Conversely, if (x,,y,) is not a weakly E-optimal point of (VP), then by making use of Lemma 3, there
have (y, —E—corK) N F(S)#{J. Thus there exist t €S, y € f(x) and e € E such that y —y, +e € —corK .
Since 2 € K~ \{0,. }, then by Lemma 2, there have (s, y —y,) —0 . (u)<<{u,y —y, +e)< 0, which
contradicts to the fact that (x,y,) is an optimal point of (VP) with respect to E.

Remark 7 If Y is a real separated locally convex topological linear space, Y is the topological dual space
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of Y and KCY is a pointed closed convex cone with nonempty topological interior, then Theorem 2 coincides

with Theorem 4.1 .

In the following, it present an example to illustrate Theorem 2.

Example 3 Let X=R,Y=R’, 7={AXBER' |A=(a,0),a ER,HER,B=(—c0, +o2)} K=R’ ,E=
K\{0},S=R, and F(z)={(y,,y,)ER |y, =z, y,=x}. Clearly,

K'=R ,F(S)={(y,.y) |y, =0y, =y},

It first verify that (Y, /) is a real locally convex topological linear space. It is clear that 7 is a topology

with convex neighborhood basis of zero [/ ,, where

J,={AXBER |A=(—a,a),a €ER,, ,B=(—0o, fc0)}.
Moreover, TV, :(y,,y,) = y, +y, is a continuous map from R* X R’ to R*. For any given neighborhood of
zero U, there exists a convex neighborhood of zero U such that 2 UCU. Therefore, for the neighborhood
(y, ,y2)+5><5, there have TV ((y, ,yZ)JFEXﬁ)Cler_thZ ﬁCyl+y2+U, which implies that TV is a
continuous map. Furthermore, TV,: (A, y) > Ay is a continuous map from R X R’ to R’. For any given
neighborhood of zero U, there exists a convex neighborhood of zero U such that 2 UCU. In addition, there
exist §>>0 and a neighborhood of zero V such that AVCU and A/ (y+V) CU for all A’ € (—8,8). Therefore,
for the neighborhood (A, y)+(—¢,8) XV, there have

TV,(Q, ) +(—8,0) X V) CAy +2U Cay +U,

which implies that TV, is a continuous map. Hence (Y, .77 is a real locally convex topological linear space. In
this space, it can verily that intE =intK =/ and corE:corK:Rz++ .

In the following, taking x,=0,y,=(0,0) € F(z,) and p=(1,0) € K . Obviously, vcl(cone(F(S)—
yo—Q—E)):RZ+ is a convex set and hence F — y  is nearly E-subconvexlike on S. Moreover, (y, — corE) [
F(S)=(). This means that (x,,v,) is a weakly E-efficient point of (VP). Since 6, (z) :i‘i‘%w’ e)=0.
Then (u,y—y )=y, +T0=2=0=0_,. (), V2 €S, y=(y,,y,) EF(x).

Thus (x,y,) is an optimal point of (VP) with respect to E.

Remark 8 If F—y, is not nearly E-subconvexlike on S, then the conclusion is not necessarily true. The
following example illustrates it.

Example 4 Let X=Y=R’, F(z)=/{z} and

K=R ,E=R \{(y,,y,) €ER [0y <1,0<y, <1},
S:{(xl,.rz) - R’ | x, =0, *3<1‘1 <0y U {(xl,xz) & R’ | x, =0, *3<1‘2 < 0}.

Clearly, K" :Ri , F(S)=S and E is an improvement set with respect to K. Moreover, corK :R2++ and
corE=R" \{(y,, y,) ER[0<y <1, 0<<y,<1}.

In the following, taking x, =(0,0), y,=(0,0) € F(x,). Obviously, vcl(cone(F (S)—y, +E)) =
Rz\(*Ri _) is not a convex set and hence F — y  is not nearly E-subconvexlike on S. Since (y, — corE) ()
F(S)=(), then (x,,y,) is a weakly E-efficient point of (VP). However, it can verify that for all =
(u, 1) €K "\{0}, the following implications hold:

D If g, =p,>0, then there have 6, (x)=—p, and there eixsts y=(—2,0) € F(S) such that

oy =y ="2p,<—p, =0 . (u);
i) If 4, >u, =0, then there have o_ () =—p, and there eixsts y=(—1,0) € F(S) such that

(i, y =y =—p, <—p,=o_.(u);
i) p,>>u, =0, then there have o () =—p, and there eixsts y=(0,—1) € F(S) such that

(y =y )=, =0 ().
Above all, (x,y,) is not an optimal point of (VP) with respect to E.

4 Lagrange multiplier theorem

In this section will establish Lagrange multiplier theorem of weakly E-efficient solutions for (VP).
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Consider the case that S={x €D |G(x)N(—P)FJ}, where DCX, G:D—>2" is a set-valued map with

nonempty value and P is a positive cone with nonempty algebraic interior in Z, Let L (Z,Y) be the set of all

linear operators from Z to Y, A subset L ‘ (Z,Y) of L(Z,Y) is defined as
L'=L"(Z,Y)={T € L(Z,Y) | T(P) CK}.

Let TEL(Z,Y). Define F+TG.S—>2" by (F+TG)(x)=F(z)+T(G(x)). I there exists x €S such that

G(z) N (—corP)#(), then it says that (VP) satisfies the generalized Slater constraint qualification.

The Lagrangian function of (VP) L:D XL (Z, Y)—>Y is defined by

L(x,T)=F () +T(G)),(x,T) € DXL (Z,Y).

Theorem 3 Let (F—y ,G) be nearly (E X P)-subconvexlike on D and (VP) satisfy the generalized Slater
constraint qualification, If (x,y,) is a weakly E-efficient point of (VP) and 0&€G(x,), then there exists T €
L " such that (x,,y,) is a weakly E-optimal point of the following unconstrained vector optimization problem:

(UVP) min L(x,T),
s.t. (0, T) € DXL (Z,Y).
and —T(G(x DN (—P))C(corK U{0})\corE.

Proof Since (x,y,) is a weakly E-efficient point of (VP), thenx €S, y, € F(x,) and (F(S)—y )
(—corE)=(). Hence,

(F(D) —y,,G(D)) N (—corE, —P)=). (6)
From the nearly (E X P)-subconvexlikeness on D of (F —y, ,G) and by Theorem 1 and (6), there exists
(1, ) €K X P \{(0,.,0,.)} such that for any + €D, yEF(x),2€G(2),e €E, 2 €EP.

g,y =y + o 2) =0 () +0o (@) = p, —e)+(p, —=2). P
In particular, letting £"=0 in (7), it obtain that
(,y — v, te)+<p,2) =0,V €D, Vy € F(a),Vz € G),Ve € E. ®

Since G satisfies the generalized Slater constraint qualification and by (8), there have € K\ {(0,.)},
Taking &, € corK satisfying {u, k,>=1 and define T :Z—Y by

T(z)=(¢p, 2k, ,z € Z. 9
Clearly, TEL (Z,Y), Taking x =x,,yv=y,and 2 =2, €G(x )N (—P)in (8) and from ¢ € P, it
obtains that

0

— (e < (¢, 2,7 < 0. (10)
By (10), there have — T (2,) = — (¢, 2,2k, € corK U {0}. By means of (10), there have — T (z,) ¢ corE.
Otherwise, from Lemma 3, there exists ¢ © E such that —T(z,) —e € corK. Consequently, (u, T(z,)+e><<0,i.e.,
(¢, z,><<—{p, e>, which contradicts to (10). Noticing that z is arbitrary in the set G(x ) (N (—P), it obtains that

—T(G(x )N (—P))T(corK U{0})\corE. Furthermore, from TEL (Z,Y) and 0€G(x,), it follows that 0€
T(G(x,)). Thus, it gets that y, € F(x )DCF(x ) +T(G(x,))=L(x,,T). Hence, from (8) and (9), it follows
that for any x €S, yEF(2) ,2€G(x) e €F, {u, y t T ()=, y)+<, 20 {pt, b ) =, y, —e).

This implies that (g, y +T(z)—y )=0_, (), Y2 €S, VyE€EF(x),V2€G(x). Hence, (x,,y,) is an

optimal point with respect to E for the problem (UVP) given by (UVP), min (e, L(z, T)). Tt

(2, TYESXLT(Z, V)
follows from Theorem 2 that (x,,y,) ia a weakly E-optimal point of (UVP).
Remark 9 If Y and Z are two real separated locally convex topological linear spaces, Y and Z  are the
topological dual space of Y and Z respectively, KCY and P CZ are two pointed closed convex cones with

L . o . [13]
nonempty topological interior, then above Theorem 3 coincides with Theorem 5. 1 .
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