三维测量中基于脊波变换的图像预处理及拐点检测。

龙兴明,郭世刚

(重庆师范大学物理学与信息技术学院,重庆400047)

摘 要 图像预处理及拐点检测研究是基于计算机技术三维测量研究的重要内容之一。提出基于傅立叶变换去模 糊并结合有限离散脊波变换实现去噪的图像预处理方法,并在此基础上利用拐角测度法实现拐点检测。通过仿真 实验把建议的算法同常用预处理后的典型检测算法作深入的比较研究,结果表明该算法具有较高的鲁棒性、较小的 误判率以及丢失率等优点。

关键词 三维测量 ,脊波变换 ,图像预处理 ;拐点检测

中图分类号 :TP391

文献标识码 :A

文章编号:1672-6693(2007)02-0046-04

A Study of Preprocessing and Corner Detection in 3D Measurement Based on Ridgelet Transform

LONG Xing-ming , GUO Shi-gang

(College of Physics and Information Technology, Chongqing Normal University, Chongqing 400047, China) Abstract: Image preprocessing and corner detection are of importance in 3-dimension measurement based on PC technology. A novel image preprocessing method by combining the deconvolution based on Fourier transform with the white Gaussian denosing method based on finite ridgelet transform is proposed, and then a corner detector is gotten according to the values of cornerness. The simulations are made between the suggested method and classic method, which show the suggested method is robust and accurate.

Key words :3-dimension measurement ; redgelet transform ; image preprocessing ; corner detector

基于计算机技术的三维测量中,由 CCD 实际获 得的二维图像往往要受到外界噪声干扰以及光学系 统的孔径限制,因此从二维图像获取拐点信息时需 要对其进行去噪及去模糊处理^[1]。近年来,出现了 大量的关于图像去噪及去模糊处理算法^[25],如基于 POCS 的迭代算法、基于混合高斯模型的概率统计方 法以及基于频域变换的傅立叶小波直接方法等。作 为决定了三维测量精度的拐角检测算法主要分为两 类^[67]:第一类是先对图像进行分割并对分割图像边 缘进行表示,然后把检测边缘的极大曲率点作为拐 角点;第二类方法是在灰度图上直接进行拐角测度 (Cornerness)计算的检测算法,如 Kitchen、Rosenfeld 和 Harris 算子。但是,基于模糊降质图像的拐角检 测是一个较难的问题,模糊、噪声和不必要细节的存 在很大程度上干扰了经典算法的性能。笔者首先提 出了基于有限离散脊波变换的图像预处理方法,然 后根据拐角测度获得所需定标模板拐角的检测。假 定三维测量中记录图像是真实图像通过了一个卷积 加性高斯噪声的相机模型后获得的降质图像,即记 录图像 y 是理想定标图像 x 与相机等效传递函数 h相卷积并受到外界加性高斯噪声干扰后获得,表示 为 $y = h \otimes x + n_o$ 在此模型下,首先考察基于傅立叶 变换实现反卷运算并结合有限离散脊波变换进行去 噪的预处理方法,然后把改善的记录图像进行拐点 检测实验,最后通过仿真实验从鲁棒性、误判率以及 丢失率等方面把建议的算法同常用的预处理后的典 型检测算法作深入的比较研究。 1 脊波分析简介

1998 年, E. J. Candes 提出了^[89] 对包含奇异直 线的图像具有 *m* 项最优近似表示的脊波变换理论, 并给出了广义的进行稳定级数展开的框架,并指出 脊波变换对奇异直线图像的 *m* 项最优近似表示 f_m^{MR} 的均方误差为 m^{-2} ,这优于傅立叶变换的 *m* 项最优 近似均方误差($m^{-1/2}$)以及正交小波变换 *m* 的项最 优近似均方误差(m^{-1})。

1.1 连续脊波变换定义

可积函数 f(x,y) 的连续脊波变换定义为 $CRT_{f}(a b \theta) = \int_{\mathbb{R}^{2}} \Psi_{abb}(x y)(x y) dy 其中 \Psi_{abb}(x y) =$ $a^{-1/2}\Psi(\frac{x\cos\theta + y\sin\theta - b}{a})\theta$ 为脊波函数的方向,参数 a b分别为脊波函数的位置和尺度参数,这里的函数 $\Psi(x)$ 为类似一维小波定义,即满足 $\int |\hat{\Psi}(s)^{2}|/|s|^{2}ds < \infty$ 。脊波函数的收敛域为 $\{x,$ $|x\cos\theta + y\sin\theta - b| < a\}$,并且在脊波函数方向 θ 的 垂直方向上为类小波函数 $\Psi(x)$,在 $x\cos\theta + y\sin\theta =$ c的线上脊波函数为常数,如图 1(a)为'db7'类小波 函数 $\Psi(x)$ 并利用参数 $a = 2 b = 1 \theta = 5\pi/6$ 获得 的脊波函数 $\Psi_{abb}(x y)$,如图 1(b)。

1.2 有限离散脊波变换(FRAT)

根据连续脊波变换定义知,脊波变换可以通过 Randon 变换域中的一维小波变换获得。本质上讲, 脊波变换利用 Randon 变换把直线奇异性转变为适 合一维小波检测的点奇异性,然后利用一维小波分 析检测该奇异点。因此,有限离散脊波变换可以首 先通过 M. N. Do 提出的有限离散 Randon 变换,然后 在 Randon 变换域中进行离散的一维小波变换获得。 M. N. Do 提出,有限离散 Randon 正变换定义为某一 线集合上的像素累和;有限离散 Randon 逆变换定义 为通过给定点处的所有 Randon 系数之和,并且利用 F. Matus 提出的最优内存分配算法具有 $O(p^2 \log p^2)$ 的计算量。在有限栅格 Z_p^2 上,对实函数 f(i,j) 的 FRAT 定义为

$$r_{k}[l] = FRAT_{j}(k|l) = \frac{1}{\sqrt{P}} \sum_{(i|j) \in L_{k}} f[i|j]$$

这里 $L_{k_{l}}$ 表示有限栅格 Z_{p}^{2} 上构成线的像素 ,即

 $L_{k \mid l} = \begin{cases} \{(i \mid j) : j = ki + l \pmod{p} \ j \mid i \in Z_p \} \ 0 \le k$

其中 $Z_p = \{0, 1, ..., p-1\} Z_p^* = \{0, 1, ..., p\} k \in Z_p^*$ 、 $l \in Z_p$ 分别表示线的斜率以及切距, 当 k = p 时表示垂直线。因此,对于 Z_p^2 上的有限栅格共有 p(p+1)条直线并且每条直线上有 p 个点。由于上述的 $L_{k,j}$ 的定义进行了模 p 操作,因此这些线的集合表现出边缘"包裹效果"的周期化效果,可以采用组最优排列的有限离散 Randon 变换进行克服。

2 基于脊波变换预处理及拐点检测算法

2.1 基于脊波变换的图像预处理算法

基于脊波变换的图像预处理算法可通过以下两 个阶段。

第一阶段,傅立叶域中的 Wiener 逆滤波。其频 域响应为 $G(f) = \frac{1}{H(f)} \left(\frac{|H(f)|^2 P_x(f)}{|H(f)|^2 P_x(f) + \sigma^2} \right)$,其中 H(f)为系统传递函数 h 的傅立叶变换, $P_x(f)$ 为信 号 x 的功率谱密度。因此,对降质校的记录定标图 像 y 进行平稳 Wiener 逆滤波后有

 $\hat{y} = IFFT{FFT(y)Q(f)} = G^{wf}x + G^{wf}n$ 这里, *TFFT* 与 *FFT* 分别表示快速傅立叶逆变换与 正变换; $G^{wf}x$ 与 $G^{wf}n$ 分别为平稳逆滤波后的保留图 像成份与泄露噪声部分。

第二阶段,有限离散脊波域中的去噪。根据第 二部分有限脊波变换理论,在有限离散脊波变换域 中对经过平稳 Wiener 逆滤波后的 ŷ 图像进行泄露 噪声部分 G^{efn} 的去除似乎更为合理。首先对平稳 Wiener 逆滤波后的图像 ŷ 进行有限离散脊波正变 换,然后在脊波空间中根据脊波系数的大小排序并 保留少量比例能量较大的脊波系数,最后对处理后 的脊波系数进行有限离散脊波逆变换,从而获得预 处理后的图像。

2.2 拐点检测

经过脊波变换预处理后的图像,计算基于一阶 导数的拐角测度,选取大于某个阀值并且保留在某 个区域内唯一最大拐角测度值为所求的目标拐角检 测点。具体为,1)利用x,y方向的微分算子对重构 图像的灰度函数再进行求导,获得 f_x^*,f_y^* ,以及 f_xf_y ; 2)计算每个像素的拐角测度*C*, $C = \frac{f_x^2 f_y^2 - f_x f_y}{f_x^2 + f_y^2}$; 3)去除低于某个阀值的侯选拐角,并且只保留在某 个区域内最大拐角测度值,则该值所在位置为所求 目标拐角点。

3 仿真实验及结果

假定实际的相机记录定标图像为理想的"方格"定标模板图像经过了照相机等效传递函数 h(等效于半径为 7 个单位像素的圆形冲击函数)受到白高斯噪声干扰后获得^{10-11]}。以下分别考察建议的相机定标图像预处理方法对降质记录图像的恢复效 果 噪声的敏感度以及经过预处理后的图像对拐角 检测算子性能的影响。

首先、利用建议的基于脊波变换的预处理方法, 对记录定标模板图像(模糊信噪比(BSNR)等于 1dB)进行预处理,见图2(b)。其中在有限离散脊 波变换域去噪过程中,保留5%的较大能量系数,令 其余系数为0,恢复的结果如图2(c)理想的结果如 图2(a)。可见该算法在视觉效果以及ISNR/SNR 都有所提高。最后,利用经典Harris拐角检测算子 对直接获得的记录定标图像、经典的Wiener预处理 以及建议预处的图像进行拐角提取,结果如图2 (a).2(b)和2(c)。可见建议的预处理方法有利于 提高拐角检测精度。

其次,通过改变模糊信噪比,可获得建议预处理 算法随模糊信噪比(BSNR)的变化对提升信噪比 (ISNR)以及信噪比(SNR)的影响。由图3可知,建 议的算法具有较好的鲁棒性。

另外,把建议的算法同常用的典型检测算法作 比较研究,包括 Harris 算子、Wiener 预处理后 Harris 算子、基于正交小波预处理后 Harris 算子。仿真结 果如图4所示(a)为无噪声情况下 Harris 算子检测 的结果(c)为利用 Harris 算子直接对噪声图象 (SNR = 3.55 dB)检测的结果(d)(e)分别为经过 Wiener 以及正交小波去噪后的 Harris 算子仿真结 果(f)为建议的拐角检测算法结果。其中,微分算 子大小取为3×3 预定阀值为重构图象最大灰度值 的0.15 倍且在大小为11×11 圆域内只保留一个最 大侯选拐角。

图 4 建议算法与常用算法比较图

最后,分别考察在3种不同信噪比条件下,建议 算法同其它的3种算法在检测点数、丢失点数以及 误判点数等技术指标方面的对比。表1为各种检测 算法同无噪声情况下利用 Harris 算子、Wiener 预处 理后 Harris 算子、基于正交小波预处理后 Harris 算 子以及建议算子检测结果比较,发现建议算法比 Harris、Wiener 以及正交小波去噪后的 Harris 算法具 有较好的鲁棒性以及检测精度。

表1 建议检测算子与其它的检测算子比较表

检测算法	Harris 算子			Harris 算子			Harris 算子			Harris 算子		
SNR/dB	检测	检测	检测	检测	丢失	误判	检测	丢失	误判	检测	丢失	误判
	点数	点数	点数	点数	点数	点数	点数	点数	点数	点数	点数	点数
×	140	140	140	140	46	0	140	4	0	140	4	0
6.43	126	126	126	126	55	0	95	49	3	131	13	3
3.55	109	109	109	109	60	0	58	86	14	129	15	5

4 结论

提出了一种基于脊波变换的三维测量中图像预 处理方法以及拐点检测算法。仿真实验表明建议算 法克服了一般基于拐角度方法对噪声的敏感性,提 高了拐角检测的鲁棒性,同时通过把建议的算法与 常用预处理后的典型检测算法作深入的比较研究, 结果表明该算法具有较小的误判率以及丢失率。

参考文献:

- [1]高文,陈熙霖. 计算机视觉——算法与系统原理(第一版)[M]. 北京 清华大学出版社,1999.
- [2] 龙兴明,周静,马燕.基于复数小波的图像恢复算法研 究 J].信息与控制,2004 A(33):408-412.
- [3] SANCHEZ-AVILA C. Wavelet Domain Signal Deconvolution with Singularity-preserving Regularization [J]. Mathematics and Computers in Simulation ,2003 ,61(3):165-176.
- [4] CROUSE M. Wavelet-based Statistical Signal Processing Using Didden Markov Models[J]. IEEE Trans Signal Pro-

cessing , 1998 , 46(4) : 886-902.

- [5] NEELAMANI R. Inverse Problems in Image Processing[D]. Houston :Rice University, 2003.
- [6] ZHENG Z Q . Analysis of Gray Level Corner Detection
 [J]. Pattern Recognition Letters , 1999(20):149-162.
- [7] SEBE N, LEW M S. Comparing Salient Point Detectors
 [J]. Patter Recognition Letters 2003(24) 89-96.
- [8] DO M N, VETTERLI M. The Finite Ridgelet Transform for Image Representation[J]. IEEE Trans on Image Processing, 2003, 12(1):16-28.
- [9] CANDES E J. Ridgelet Theory and Application D]. CA: Stanford University 1998.
- [10] 龙兴明. 基于傅立叶-小波 HMT 方法的卫星图像恢复 [J] 重庆师范大学学报(自然科学版) 2005 22(3): 80-82.
- [11] 李征 杨舰, 琚生根, 等. 基于核心密度估计的动态目标 分割改进模型[J].四川大学学报(自然科学版) 2006 43 (5):1007-1013.

(责任编辑 欧红叶)