基于自适应神经网络模糊推理系统的心电信号检测
作者:
作者单位:

四川工程职业技术学院;重庆大学自动化学院;

作者简介:

通讯作者:

基金项目:


Electrocardiograph Signal Identification Based on Adaptive Neuro-Fuzzy Inference System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    心电信号是心血管疾病的重要诊断依据,探索新方法来处理心电信号对于医学诊疗具有重要的理论意义与实用价值。阐述了一种包含输入节点层、规则节点层、平均节点层、结论节点层和输出节点层的五层结构网络的自适应神经网络模糊推理系统(Adaptive neuro-fuzzy inference system,ANFIS),并提出了基于Sugeno模糊理论、最小二乘法和梯度下降法的混合自适应学习算法来训练ANFIS中的神经网络的参数,来提高ANFIS系统的收敛性能。为验证ANFIS系统在心电信号检测中的有效性,通过原始心电信号的实测数据中的第一路腹壁混合信号(CECG)和最后一路母体心电信号(MECG)进行了ANFIS的网络训练,基于训练结果对于腹壁混合信号进行了实验预测分析,实验结果表明自适应神经网络模糊推理系统在心电信号的分析与预测中十分有效。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

盛维涛,张文君,袁宇鹏,苏航,
.基于自适应神经网络模糊推理系统的心电信号检测
[J].重庆师范大学学报自然科学版,2015,(6):140-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: