广义渐近拟非扩张型映象不动点的逼近
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn+∞,∑∞n=1γn+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

胡国英,梁天娟.广义渐近拟非扩张型映象不动点的逼近[J].重庆师范大学学报自然科学版,2008,(1):10-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: