基于自监督域自适应网络的苹果叶部病害识别
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

重庆市高校创新研究群体(No.CXQT20015)


Apple Leaf Diseases Recognition Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为解决现实农业生产环境中的苹果叶部病害识别较为困难的问题,提出一种基于自监督域自适应网络的识别模型。该模型首先引入域自适应的方法,通过苹果叶部图片源域与目标域数据集的联合训练,减少源域到目标域的域偏差,增强预训练的模型在目标域上的泛化能力;其次添加自监督模块并引入一种对比损失,使模型在特征空间上学习到病变区域更为细致的表征信息,从而有效增强对相似症状的辨别能力,提高模型的分类性能。模型在具有复杂背景的公共苹果数据集上进行实验,结果表明所提模型对各类病害的平均识别准确率为9131%,实现了较高的分类准确度。所提模型与其他流行的卷积神经网络方法相比,实验结果有一定的提升,验证了提出的模型在实际生产环境中对苹果叶部病害识别上的有效性。

    Abstract:

    Aiming at the difficulty of apple leaf disease recognition under actual agricultural production environments, a recognition model is proposed based on self-supervised domain adaptive network.This model first introduces the dynamic domain adaptive method. Through the joint training of crop leaf image source domain and target domain data set, the domain deviation from the source domain to the target domain is reduced, and the generalization ability of the pre-trained model in the target domain is enhanced. Secondly, a self-supervised module is added and a contrast loss is introduced to make the model learn more detailed representation information of the lesion area in the feature space, so as to effectively enhance the ability to distinguish similar symptoms and improve the classification performance of the model. The model was tested on a public apple dataset with complex backgrounds, and the experiment showed that the average recognition accuracy of this model for various diseases reached 9131%, achieving high classification accuracy. Compared with other popular convolutional neural network methods, the experimental results of this model have shown some improvement, verifying the effectiveness of the proposed model in identifying apple leaf diseases in actual production environments.

    参考文献
    相似文献
    引证文献
引用本文

程超,吕佳,范亚洲.基于自监督域自适应网络的苹果叶部病害识别[J].重庆师范大学学报自然科学版,2024,41(3):89-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-20