累加正弦化混沌系统模型的性能分析
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然基金青年科学基金项目(No.51507023);重庆市自然科学基金面上项目(No.cstc2020jcyj-msxmX0726);重庆市教育委员会科技项目重点项目(No.KJZD-K202100506);重庆市高校与中国科学院附属机构合作项目(No.HZ2021007)


Performance Analysis of Additive Sinusoidal Chaotic System Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为进一步提高现有的混沌系统的复杂度,提出了累加正弦化混沌系统的增强型模型(additive sinusoidal chaotic system model,ASCSM)。该模型通过将3个一维正弦化的传统混沌映射(Logistic、Sine和Fraction映射)两两结合来增强混沌系统的复杂程度。首先,通过理论分析证明了ASCSM的性能,并根据复杂度指标(Lyaponuv指数、谱熵和C0复杂度)仿真分析了增强后的混沌映射的动态特性,结果表明增强后的混沌映射较种子混沌映射性能更好。其次,基于数字信号处理器平台,利用ASCSM产生随机序列验证了该模型在硬件系统上实现的可行性。最后,为了与传统混沌映射在图像加密中的应用能力相比较,将这些模型作为加密算法的异或序列生成器,通过各种加密评估指标证明了新模型在加密应用中具有更高的保密性。

    Abstract:

    To further increase the complexity of existing chaotic systems, the work proposes the Additive Sinusoidal Chaotic System Model (ASCSM), which adds two one-dimensional sinusoidalized conventional chaotic mappings (Logistic, Sine, Fraction) to enhance the complexity of chaotic systems. First, the performance of ASCSM is proved by theoretical analysis, and the dynamic characteristics of the enhanced chaotic mapping are simulated and analyzed according to the complexity metrics (Lyapunov exponent, spectral entropy, complexity), and the results show that the enhanced chaotic mappings performs better compared to the seed chaotic mappings. Secondly, based on the digital signal processor (DSP) platform, the feasibility of implementing the model on a hardware system is verified by generating random sequences using ASCSM. Finally, in order to compare its capability with traditional chaotic mappings in image encryption using these models as XOR sequence generators for encryption algorithms. Various cryptographic evaluation metrics demonstrate that the new model has higher confidentiality in cryptographic application.

    参考文献
    相似文献
    引证文献
引用本文

李忠洪,王蕊,王洁,李国楠,罗海军.累加正弦化混沌系统模型的性能分析[J].重庆师范大学学报自然科学版,2024,41(5):95-105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-01