多分支分组卷积的特征级联农作物病害识别
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

重庆市高校创新研究群体项目(No.CXQT20015)


Multi-Branch Grouping Convolution Feature Cascaded Crop Disease Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对现有小样本学习中农作物病害识别参数量高、网络易出现梯度消失等问题,提出一种多分支分组卷积的特征级联农作物病害识别模型。首先,该模型将分组卷积应用于残差块,利用残差块缓解网络的梯度消失问题。其次,将网络的输入拆分成同构多分支的嵌入,通过不同分支间的特征补充,获取更加丰富的特征并降低网络参数量。最后,设计了一种多层特征级联的骨干网络,用于挖掘图像中不同层次的信息,将浅层特征中更多位置、细节信息和深层特征中更强的语义信息级联输出,提升网络的泛化能力。在PlantVillage数据集上,该模型在5-way 1-shot与5-way 5-shot任务上的识别准确率分别达到了(79.68±0.35)%和(93.25±0.21)%,比原型网络分别提升了3.74%和4.32%。实验结果表明,本文模型能较好地识别农作物病害,并且在加深网络深度的同时降低了网络参数量、缓解了梯度消失以及挖掘出了不同层次的语义信息,有效解决了农作物病害小样本学习问题。

    Abstract:

    Aiming at the problems of the high number of crop disease recognition parameters and gradient disappearance of the network in the existing few-shot learning, a multi-branch grouping convolution feature cascade crop disease recognition model is proposed. Firstly, the model applies grouped convolution to the residual block, which is used to alleviate the gradient disappearance problem of the network. Secondly, the input of the network is divided into isomorphic multi-branch embeddings, and more abundant features are obtained and the number of network parameters is reduced through the feature supplementation between different branches. Finally, a multi-layer feature cascade backbone network is designed to mine different levels of information in the image, and more location and detail information in the shallow features and stronger semantic information in the deep features were cascaded out to improve the generalization ability of the network. On the PlantVillage dataset, the accuracy of the model on the 5-way 1-shot and 5-way 5-shot tasks reached (79.68±0.35)% and (93.25±0.21)%, respectively, which were 3.74% and 4.32% higher than the prototype network. The experimental results show that the proposed model can better identify crop diseases, and reduce the number of network parameters while deepening the depth of the network, alleviating the gradient disappearance and mining different levels of semantic information, which effectively solves the problem of few-shot learning of crop diseases.

    参考文献
    相似文献
    引证文献
引用本文

吕佳,彭港建,巫若愚.多分支分组卷积的特征级联农作物病害识别[J].重庆师范大学学报自然科学版,2024,41(5):115-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-01