复合随机需求下基于阈值策略的库存分配模型研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金面上项目(No.72172022);教育部人文社会科学项目(No.21YJC630016);重庆市教育委员会人文社会科学研究一般项目(No.24SKGH119);重庆市研究生导师团队项目(No.JDDSTD2022005)


An Investigation of Threshold-Based Inventory Rationing Strategy under Compound Stochastic Demand
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在订单驱动的库存决策中,需求订单的到达常呈现出双重随机叠加的特点,即需求订单的随机到达和需求规模的随机呈现。为解决此背景下常见的库存问题,考虑了需求到达和规模符合复合随机条件下备件库存的最优分配问题。具体来看,在周期检查(S,T)订货策略下以备件库存系统为研究对象,研究在复合随机需求条件下,基于阈值策略的积压需求清理机制建立缺货成本高和低2类需求的库存分配模型,实现库存成本最小化。在模型求解上,不同于之前的研究仅采用枚举法,本文应用了改进遗传算法,并设计了一种简单、高效的启发式算法。数值实验结果表明,启发式算法在求解所建立的2类模型都表现出了更好的求解效果,阈值策略比先到先服务和库存分割策略有明显的降本优势;敏感性分析证明阈值策略的相对成本优势随检查期、到达需求规模均值增加而减少,随提前期、单位库存持有成本增加而增加。研究结果为库存的精益管理提供决策参考。

    Abstract:

    In order-driven inventory decision-making, the arrival of demand orders is often characterized by multiple stochastic superposition, i.e., random arrival of demand orders and random presentation of demand sizes. To solve the common inventory problem in this context, it considers the optimal allocation problem of spare parts inventory under the demand arrival and size conforming to the compound stochastic conditions. Specifically, with the spare parts inventory system as the research object under the cycle check (S, T) ordering strategy, it studies the inventory allocation model for two types of demands with high and low shortage costs based on the backlog demand clearance mechanism of the threshold strategy under the composite stochastic demand conditions to achieve the minimization of inventory costs. For model solving, compared with the enumeration method only used in previous studies, an improved genetic algorithm is applied for the first time, and a simple and efficient heuristic algorithm is designed. The results of numerical experiments show that both the heuristic algorithms are better than the first-come-first-served (FCFS) and stock-piling split (SPS) strategies and indicate that the threshold strategy has a significant advantage over the first-come-first-served (FCFS) and stock-piling split (SPS) strategies. The sensitivity analysis proves that the relative cost advantage of the threshold strategy decreases with the increase of the checking period, the mean value of the arriving demand size, and increases with the increase of the lead time and the cost of the unit stock-piling holding. The results of the project provide decision-making reference for lean inventory management.

    参考文献
    相似文献
    引证文献
引用本文

崔利刚,谢文静,吴有,杨京昊.复合随机需求下基于阈值策略的库存分配模型研究[J].重庆师范大学学报自然科学版,2025,42(1):1-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-07