有限产能下基于满意度的平台订单分配研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家社会科学基金项目(No.23BGL058);河南省高等学校哲学社会科学创新团队支持计划(No.2024-CXTD-06);河南省研究生教育改革与质量提升工程项目(No.YJS2025SZ11);河南理工大学人文社会科学研究基金项目(No.SKZD2025-07)


Research on Platform Order Allocation Model Based on Satisfaction Degree and Limited Capacity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对已有订单分配模型多假定供应商产能必须充分满足需求商订单需求,且忽略需求商满意度的情形,构建了有限产能下基于满意度的多供应商、多需求商、多产品、多周期的混合整数规划模型,通过最小化总分配成本体现了经济性,通过最大化最小交付质量满意度以及最大化最小交付时间满意度体现了均衡性。基于极大极小目标函数处理和多目标处理对模型进行了转换,节约了算法求解时间。证明了订单分配问题的NP特性,并设计了求解大规模问题的模拟退火算法。实验结果表明,所提出的模型能够兼顾订单分配的成本、质量和时间目标。与已有模型相比,所提模型可以有效避免因供应商有限产造成的个别需求商订单严重短缺的情况,能够最大程度地确保多需求商之间的满意度均衡;所设计的模拟退火算法在处理大规模问题时的求解质量优于标准遗传算法,求解效率优于LINGO软件。

    Abstract:

    In view of the situation that the existing order allocation models mostly assume that the supplier’s capacity can fully meet the demand of the demander, and ignore the fair allocation between multiple demanders, a mixed integer programming model considering satisfaction degree of multiple suppliers, multiple demanders, multiple products and multiple cycles under limited capacity is constructed. The economy is reflected by minimizing the total allocation cost, and the equilibrium is reflected by maximizing the minimum delivery quality satisfaction and the minimum delivery time satisfaction. Based on the maximum and minimum objective function processing and multi-objective transformation, the model is transformed to save the algorithm solving time. The NP property of the order allocation problem is proved, and the simulated annealing algorithm for solving large-scale problems is designed. The experimental results show that the proposed model can take into account the cost, quality and time objectives of order allocation. The established model is compared with the existing model, it can effectively avoid the serious shortage of orders of individual demanders caused by the limited capacity of suppliers, and ensure the equilibrium of satisfaction degree among multiple demanders to the greatest extent. The designed simulated annealing algorithm is superior to the standard genetic algorithm in solving large-scale problems, and its solving efficiency is better than LINGO software.

    参考文献
    相似文献
    引证文献
引用本文

范志强,师冉冉,梁宁宁,李姗姗.有限产能下基于满意度的平台订单分配研究[J].重庆师范大学学报自然科学版,2025,42(1):14-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-07