具有Holling Ⅲ型功能反应的捕食系统的稳定性及分岔分析
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金面上项目(No.12471153,No.11971081);重庆英才计划项目(No.cstc2024ycjh-bgzxm0046);重庆市青少年创新人才培养雏鹰计划;重庆师范大学高等教育教学改革研究项目(No.202223)


Stability and Bifurcation Analysis of A Predator-Prey System with Holling Ⅲ Functional Response
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    对一类Holling Ⅲ型功能反应的捕食系统在不动点的稳定性及分岔情况进行分析。对系统的不动点分类讨论:不动点为双曲型时,分析特征方程的根的模与1的大小关系;不动点为非双曲情形时,利用中心流形理论和分岔理论对特征值进行分析。系统的不动点为双曲型时,得到稳定性的判据;不动点为非双曲情形时,以正不动点为例,系统在正不动点处发生Flip分岔和Neimark-Sacker分岔,而不会发生跨临界分岔,还得到系统在正不动点处分岔出的周期轨道或不变曲线的稳定性的判据。数值模拟验证了理论分析的正确性。

    Abstract:

    The stability and bifurcation of a predator-prey system with Holling type Ⅲ functional response at fixed point are analyzed. The fixed point classification of the system is discussed. When the fixed point is hyperbolic, the relationship between the modulus of the root of the characteristic equation and the size of 1 is analyzed. When the fixed point is non-hyperbolic, the center manifold theory and bifurcation theory are used to analyze the eigenvalues. The stability criterion is obtained when the fixed point of the system is hyperbolic. When the fixed point is non-hyperbolic, taking the positive fixed point as an example, Flip bifurcation and Neimark-Sacker bifurcation occur at the positive fixed point of the system, but no transcritical bifurcation occurs. The stability criterion of the periodic orbit or invariant curve bifurcated from the positive fixed point of the system is also obtained. Numerical simulation verifies the correctness of the theoretical analysis. The research results advance the related work in the existing literature.

    参考文献
    相似文献
    引证文献
引用本文

谭琦颀,杨志春.具有Holling Ⅲ型功能反应的捕食系统的稳定性及分岔分析[J].重庆师范大学学报自然科学版,2025,42(1):103-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-07