斑马优化算法的收敛性分析
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学青年科学基金项目(No.12401699);重庆市自然科学基金创新发展联合基金重点项目(No.CSTB2023NSCQ-LZX0037);国家重点研发计划重点专项(No.SQ2023YFA1000183)


Convergence Analysis of Zebra Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    斑马优化算法是一种崭新的基于群体智能的优化算法,此算法已顺利地应用于诸多复杂的优化问题求解,尽管基于斑马优化算法有许多改进后的算法,但是都缺少严谨的收敛性分析,不能从理论上证明算法是否达到全局最优,缺乏理论支撑。因此,利用随机过程中的Markov理论对斑马优化算法进行收敛性分析,为斑马优化算法的改进和工程应用奠定了良好的理论基础。首先给出斑马优化算法的斑马状态空间和斑马位置的转移概率的数学定义;其次建立斑马优化算法的Markov链模型,然后论证斑马群状态序列Markov链是有限齐次的,且状态空间是可约的;最后结合算法的全局收敛准则,证明了斑马优化算法的Markov链模型能够满足随机搜索算法全局收敛的2个假设,验证了算法的全局收敛性。此外,通过选取不同特征的16个标准测试函数对斑马优化算法进行数值实验,成功的验证了本文理论证明的正确性并体现出斑马优化算法的特点。

    Abstract:

    The zebra optimization algorithm is a brand-new optimization algorithm based on swarm intelligence. This algorithm has been successfully applied to solve many complex optimization problems. Although there are many improved algorithms based on the Zebra Optimization Algorithm, they all lack rigorous convergence analysis and cannot theoretically prove whether the algorithm can reach the global optimum. Therefore, the improved algorithms lack theoretical support. Therefore, the Markov theory in stochastic processes is utilized to conduct convergence analysis on the zebra optimization algorithm, laying a solid theoretical foundation for the improvement and engineering application of the zebra optimization algorithm. Firstly, the mathematical definitions of the zebra state space and the transition probability of the zebra position in the zebra optimization algorithm are given. Secondly, the Markov chain model of the zebra optimization algorithm is established. Then, it is demonstrated that the Markov chain of the zebra group state sequence is finite and homogeneous, and its state space is reducible. Finally, combined with the global convergence criterion of the algorithm, it is proved that the Markov chain model of the zebra optimization algorithm can meet the two assumptions of the global convergence of the random search algorithm, verifying the global convergence of the algorithm. In addition, numerical experiments on the zebra optimization algorithm are carried out by selecting 16 standard test functions with different characteristics. The correctness of the theoretical proof is successfully verified, and the characteristics of the zebra optimization algorithm are also demonstrated.

    参考文献
    相似文献
    引证文献
引用本文

冉谊,毛若华,司仪涵,刘晓宇.斑马优化算法的收敛性分析[J].重庆师范大学学报自然科学版,2025,42(2):29-37

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-06