一类广义不变凸多目标规划的最优性条件及对偶
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金面上项目(No.11601248)


Optimality Conditions and Duality for a Class of Generalized Invariant Convex Multi-Objective Programmings
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    讨论一类新的广义不变凸多目标规划问题的最优性条件和相应的对偶条件。借助Clarke次微分引入一类新的广义凸函数即广义(G-V,ρ)不变凸函数,研究对应不可微多目标规划问题和G-Mond-Weir对偶问题。得到了对应不可微多目标规划问题的最优性条件和G-Mond-Weir对偶问题的弱对偶、强对偶及严格逆对偶条件。对广义(G-V,ρ)不变凸函数的研究丰富了多目标规划的内容,对于后续问题在相关领域的研究具有重要意义。

    Abstract:

    To discuss the optimality and duality conditions for a class of generalized invariant convex multi-objective programming problems. A new class of generalized convex functions, namely generalized (G-V, ρ) invariant convex functions, is introduced with the help of Clarke subdifferential; the corresponding indifferentiable multi-objective programming problems and the G-Mond-Weir dual problems are studied. The optimality conditions for the indifferentiable multi-objective programming problems and the weak duality, strong duality and strict inverse duality for the G-Mond-Weir duality problem are obtained.The study on generalized (G-V, ρ) invariant convex functions enriches the content of multi-objective programmings, which is of great significance for the subsequent research in related fields.

    参考文献
    相似文献
    引证文献
引用本文

杨思琦,李飞.一类广义不变凸多目标规划的最优性条件及对偶[J].重庆师范大学学报自然科学版,2025,42(2):127-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-06