基于改进遗传算法的汽车生产订单排产问题研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金——重大项目(No.11991022),面上项目(No.12371363);国家重点研发计划项目(No.2023YFA1011302);重庆市自然科学基金创新发展联合基金项目(No.CSTB2023NSCQLZX005)


Research on Automobile Production Order Scheduling Problem Based on Improved Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为研究多种约束条件下的订单排产问题,建立以最小化2种类型切换次数和最小化车顶套色结块长度平方差和为目标的调度优化模型,并设计一种改进的遗传算法(improvement genetic algorithm,IGA)对该问题进行求解。模型通过线性加权的方式进行构建,通过结合网格搜索和随机搜索的方式对权重进行调参,以权重的相对大小体现出对应约束优先级的高低。求解过程中对数据订单进行整数编码,采用改进的顺序交叉操作,并使用4种邻域搜索策略,以此改进传统遗传算法中的变异操作。通过对企业实际订单数据进行测试,再与传统的遗传算法(genetic algorithm,GA)、差分进化算法进行比对分析,实验结果表明IGA的优化效果及收敛能力均有明显提升,解决了传统GA求解精度低、收敛效果差以及约束满足率低的问题。

    Abstract:

    The order scheduling problem is studied under various constraint conditions. A scheduling model is established with the goal of minimizing the number of switching between two types and minimizing the sum of squared differences in the length of the car roof color blocking, and an improved genetic algorithm (IGA) is designed to solve the problem. The model is constructed through linear weights, which the weights are adjusted by combining grid search and random search to reflect the corresponding constraint priority based. During the solving process, integer encoding was applied to the data orders, and an improved sequential crossover operation was adopted, as well as four neighborhood search strategies, which improved the mutation operation in traditional genetic algorithms. By testing actual data orders of enterprises and comparing them with traditional genetic algorithms (GA) and differential evolution algorithms, the optimization effect is obtained and convergence ability of the IGA proposed are significantly improved. The IGA proposed can be solved the problems of low solution accuracy, poor convergence effect, and low constraint satisfaction rate in traditional GA.

    参考文献
    相似文献
    引证文献
引用本文

张顺,张煜凯,张新功,王慧.基于改进遗传算法的汽车生产订单排产问题研究[J].重庆师范大学学报自然科学版,2025,42(4):14-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-11