异构并行车间多目标排产优化粒子群算法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金面上项目(No.12371363);辽宁省“兴辽英才计划”项目(No.XLYC2403125)


Multi-Objective Scheduling for Heterogeneous Parallel Workshops with a Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对异构并行车间排产优化问题,提出了一种改进的多目标粒子群算法,以提高生产效率,进而促进企业利润最大化。建立了基于生产加工成本与工件拖期时间的多目标优化模型,在算法中针对惯性权重、全局最优解、外部存档等方面进行了优化设计。通过动态调整惯性权重增强粒子群在解空间中的搜索能力,通过全局比例排序和计算循环距离寻找全局学习样本以提高算法效率。实验结果表明,算法在研究问题上实现了2个目标之间的均衡,可生成一定数量的Pareto最优解,供决策者选择。

    Abstract:

    With the development of intelligent manufacturing, the heterogeneous parallel workshop scheduling problem has increasingly attracted attention. In such workshops, machines vary in number and processing capabilities, requiring coordinated optimization to enhance production efficiency. It addresses the optimization problem of scheduling in heterogeneous parallel workshops by establishing a mathematical model with the objectives of minimizing total production costs and minimizing total tardiness. An improved multi-objective particle swarm optimization (MOPSO) algorithm is proposed to solve this problem. The algorithm dynamically adjusts the inertia weight to enhance the global search capability of the particle swarm in the solution space. It also improves algorithm efficiency by ranking and calculating cycle distances to identify global learning samples. Experimental results demonstrate that the proposed algorithm effectively balances the two objectives and generates Pareto-optimal solutions, providing decision-makers with various options.

    参考文献
    相似文献
    引证文献
引用本文

葛建军,陈鑫,温玉玺.异构并行车间多目标排产优化粒子群算法研究[J].重庆师范大学学报自然科学版,2025,42(4):24-33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-11