DOI :10. 3969/J. ISSN. 1672-6693. 2009. 04. 023

Si 掺杂金红石 TiO₂ 光学特性的第一性原理研究^{*}

冯庆

(重庆师范大学物理学与信息技术学院光学工程重点实验室,重庆400047)

摘要 :TiO₂ 是一种重要的 n 型金属氧化物半导体功能材料。近年来的实验与理论研究表明,运用杂质掺入来减小 TiO₂ 禁带宽度是提高其活性的一种有效办法。本文运用基于局域密度泛函和赝势的第一性原理方法,从理论上研 究了 Si 掺杂金红石相 TiO₂ 的电子结构和光学特性。通过能带结构、态密度及电荷布居的分析发现 Si 原子的引入使 Si-Ti 的键长发生明显的变化,近邻氧原子有靠近硅原子的趋势而近邻钛原子有远离硅原子的趋势。半导体禁带宽度 没有明显变化,但是禁带中产生了一个杂质能级,该杂质能级主要是由 Si 的 3p 电子和 Ti 的 3d 电子杂化引起的。因 此, Si 掺杂能使材料的宏观特性表现为电子激发能量减小 材料活性增强 响应可见光范围达到 480 nm 左右。

关键词 TiO_2 Si 掺杂 第一性原理 念红石

中图分类号 :0644

文献标识码 :A

文章编号:1672-6693(2009)04-0106-04

TiO, 是一种 n 型金属氧化物半导体 ,是一种新 型无机功能材料、具有宽禁带、催化活性高、化学稳 定性好等优势。TiO, 能稳定存在的主要是金红石 和锐钛矿两种晶型,自然界中大多以红色或金黄色 形式存在。近年来,TiO,光催化特性^[1]被大量地运 用在有机物的降解方面,但是其宽禁带导致了其对 可见光的利用率低。为了扩展 TiO, 的光吸收范围, 主要采用掺入过渡金属的办法来改变晶体的禁带宽 度^[2]但由于其热不稳定和容易形成载流子复合中 心 使得这一方法的运用受到限制。最近 研究该问 题的思路转向通过掺入非金属的办法来改变材料的 特性,例如掺入 N^[36]、C^[79]、S^[10-11]、F^[12]等非金属 元素 在实验上获得很大的进展。Asashi^[3]和 Khan $S^{[7]}$ 通过 N 和 C 掺杂 TiO, 晶体使其光催化和光吸 收活性极大提高,分析其原因是 N 和 C 的 2p 电子 态与 0 的 2p 电子态发生结合杂化,使其禁带宽度 减小。由于半导体的诸多性质取决于价带顶和导带 底的电子状态以及其中的载流子分布 因此带隙的 大小、能带极值的对称性、杂质能级的位置和电子态 密度分布便成为研究半导体材料最关注的问题。Si 的原子半径大于 C,核外电子排布与 C相似,掺入 TiO, 晶体后应有类似于 C 的能带结构。本文通过 研究 Si 原子掺入晶体后电子性质的变化来预测其 光催化性质 发现其也能使可吸收光发生红移 但是 却与 $N^{[36]}$ 、 $C^{[79]}$ 等非金属掺杂的情况不同。

1 计算方法

金红石相的 TiO₂属于四方晶系,空间群为 P42/MNM。本文计算采用基于平面波基组赝势的从 头计算 电子-电子相互作用的交换关联由局域密度 近似(Local density approximation, LDA)进行校正, 这是目前较为准确的电子结构计算的理论方法。已 有近似的计算方法对 TiO, 的本征空位缺陷进行了 模拟^[13],笔者选择平面波截断能 E_{aut} = 340 eV,布里 渊区积分采用 Monkhorst-Pack 的特殊 k 点方案 ,选 择2×2×3个网格点,在这条件下进行赝势和电荷 密度的自洽迭代循环。迭代过程中的收敛精度为 2×10⁻⁶ eV,作用在每个原子上的力不大于 0.01 eV/nm 内应力不大于 0.1GPa。在晶体的周期场 中,由于引入了 Si 缺陷,需要构造超级晶胞并使用 三维周期性边界条件 将多电子体系用平面波函数 展开 这时要求超级原胞必须足够大 才能忽略缺陷 之间的相互作用。考虑到计算机的计算能力以及和 实际情况的符合程度 笔者构造 2 个原胞 12 个原子 组成的2×1×1的超级原胞,即Ti₄O₆(由于晶体对 称周期性 角上原子算 1/8 棱上原子算 1/4 面上原 子算1/2),并掺入一个 Si 在 O 位置上(即 Ti₄SiO7), 相当于 TiSi_xO_{2-x} x = 0.25。其优化弛豫后单位原胞 的晶格参数为 a = 9.188 Å b = 4.594 Å c = 2.959 Å, 原胞的体积为 124.898 Å3。表1 给出了 Si 替换 Ti 位 弛豫后的 $2 \times 1 \times 1$ TiO₂ 金红石电荷布居和键长情况。

* 收稿日期 2009-06-23

资助项目 :重庆师范大学博士启动基金资助项目(No.06XLB008);重庆师范大学光学工程重点实验室资助开放课题(No.0902) 作者简介 :冯庆 ,男 ,讲师 ,博士 ,研究方向为半导体功能材料。

表 1 Si 替换 Ti 位弛豫后的 $2 \times 1 \times 1$ TiO₂ 金红石电荷布居和键长

	Ti₄0‰ 图1)									Ti ₄ SiO ₅ (图2)								
名称	布居数	键长/Å	名称	布居数	键长/Å	名称	布居数	键长/Å	名称	布居数	键长/Å	名称	布居数	键长/Å	名称	布居数	键长/Å	
08-Ti2	0.80	1.94	01-Ti1	0.28	1.98	03-08	-0.10	2.77	06-Si	0.28	1.74	06-Ti2	0.43	2.03	02-Si	-0.16	2.60	
05-Ti1	0.80	1.94	06-Ti4	0.28	1.98	01-05	-0.10	2.77	03-Ti3	0.87	1.80	03-Ti2	0.25	2.16	02-07	-0.08	2.61	
06-Ti2	0.80	1.94	04-Ti1	0.28	1.98	04-05	-0.05	2.77	07-Ti4	0.33	1.83	04-Ti2	0.16	2.31	01-03	-0.05	2.67	
07-Ti1	0.80	1.94	08-Ti3	0.28	1.98	01-07	-0.05	2.77	01-Ti3	0.68	1.85	04-Ti1	0.18	2.33	04-06	-0.06	2.71	
02-Ti4	0.80	1.94	02-Ti2	0.28	1.98	02-06	-0.10	2.77	01-Ti1	0.43	1.86	05-07	-0.10	2.43	03-Si	-0.19	2.74	
01-Ti3	0.80	1.94	06-08	-0.07	2.53	03-05	-0.05	2.77	04-Ti4	0.74	1.88	Si-Ti3	0.19	2.44	01-05	-0.06	2.77	
04-Ti4	0.80	1.94	02-04	-0.07	2.53	04-06	-0.05	2.77	05-Ti3	0.28	1.88	02-04	-0.13	2.48	04-05	-0.05	2.82	
03-Ti3	0.80	1.94	05-07	-0.07	2.53	03-06	-0.05	2.77	02-Ti4	0.83	1.89	Si-Ti2	0.52	2.48	03-05	-0.03	2.85	
07-Ti4	0.28	1.98	01-03	-0.07	2.53	01-08	-0.05	2.77	07-Ti1	0.69	1.89	02-06	-0.12	2.51	04-07	-0.04	2.91	
05-Ti3	0.28	1.98	02-07	-0.05	2.77	02-08	-0.05	2.77	05-Ti1	0.70	1.89	03-06	-0.09	2.56	01-Si	-0.09	2.97	
03-Ti2	0.28	1.98	04-07	-0.10	2.77				02-Ti2	0.32	1.90	01-07	-0.07	2.56	Ti2-Ti4	-0.93	3.00	
									06-Ti4	0.24	1.96							

2 计算结果

采用 BFGS 方法优化 ,优化后晶胞的总能量为 -9 589.789 eV 其中单个 Si 原子具有能量 - 102.204 eV, 标准金红石结构如图 1 所示,采用 1~8 编号;Si 掺 杂 0 计算弛豫后的结构如图 2 所示(Si 替换图 1 的 07 位置),采用①~④编号。图1、2 与表1 结合分 析 掺入 Si 前 08-Ti3、08-Ti2 键的键长为 1.98 Å 和 1.94 Å 而替换 Si 后发现 Si-Ti3 键和 Si-Ti2 键长变 为2.44 Å和2.48 Å ,分别增加了0.46 Å和0.54 Å, 周围的 Ti 原子远离 Si 原子,如图2箭头所示。由于 近邻 Ti 原子的束缚 其 02-08 键、03-08 键和01-08 键在 Si 掺入后变化不大,分别由 O2-O8 键的 2.77 Å 变为 02-Si 键的 2.60 Å、03-08 键的 2.77 Å 变为 O3-Si 键的 2.74 Å、O1-O8 键的 2.77 Å 变为 O1-Si 键的 2.97 Å、其变化幅度在 0.2 Å 范围内 但是 06-08 键变化却很大,由 06-08 键的 2.53 Å 变为 06-Si 键的 1.74 Å,键长减小达到 0.79 Å,如图 2 中箭头 所示 晶体发生畸变 结合表 1 中电荷布居值分析其 原因是由于 Si 位置的电负性减弱 排斥周围电正性 的原子 吸引周围电负性的原子 通过键长键能和原 子周围电荷布居发现 周围的氧原子有靠近 Si 原子 的趋势 ,而周围的钛原子则有远离 Si 原子的趋势。

 Ti_4O_8 和 Ti_4SiO_7 超级原胞的能带结构如图 3、4 所示。在分析中采用了如下的局域轨道作为价轨 道 ,Q(2s 2p),Si(3s 3p),Ti(3p 3d 4s),Ti_4O_8 超级 原胞的禁带宽度为 1.81 eV,而标准的金红石的禁 带宽度则是 3.1 eV 左右,这里产生了一定的误差, 这是由于密度泛函理论本身的缺陷造成的,即在其

图 1 金红石型 TiO₂ × 1 × 1 超级原胞结构图

图 2 Si 替换 Ti 位弛豫后的 2 × 1 × 1 TiO₂
 金红石超级原胞结构图

理论框架中没有考虑交换关联势的不连续性,从而 使半导体和绝缘体的带隙理论计算值一般要小于实 验值,需要用剪刀算符进行修正,修正值为1.29 eV。从能带结构可以看出,由于Si的引入,禁带宽 度变化不大,由1.81 eV 变为2.03 eV,但是禁带宽 度由在禁带中产生了一条杂质能级,与价带顶的位 置相距1.3 eV,用1.29 eV 的修正因子修正后为 2.59 eV,根据公式 $\lambda = \frac{hc}{E} = \frac{1.240 \text{ eV} \cdot \text{nm}}{2.59 \text{ eV}} \approx 480$ nm,对应的光子能量即为480 nm,已经进入了可见 光区域(400~760 nm),提高了TiO₂ 对可见光的响 应。这种杂质能级可以成为电子的俘获中心,对光

生电子-空穴对的分离非常有利。

图 4 金红石 Ti₄SiO₇ 超级原胞的能带结构

为了研究该杂质能级的形成原因 ,笔者对电荷 态密度进行了分析,图 5、6 分别表示 Ti₄O₂和 Ti_4SiO_7 的态密度 s 电子对费米面附近的电子状态 密度的影响很小 对费米面附近的能带结构影响可 以忽略。纯金红石晶体费米能级附近钛原子的 3d 轨道分裂成 t2 态和 e. 态,价带主要由氧的 2p 轨道 和钛的 3d 轨道 e_a 态构成。氧的 2p 轨道起主要贡 献,钛的3d轨道e。态起次要贡献,费米面附近价带 宽度大约 6.1 eV。导带主要由氧的 2p 轨道和钛的 3d 轨道 t2 态构成, 钛的 3d 轨道 t2 态起主要贡献, 氧 2p 轨道电子起次要贡献,导带宽度大约3.5 eV。当 Si 掺入后,笔者发现 Si 的 3p 电子在禁带中有一个 峰值,如图 6(a)中箭头所示,而 O2p 电子的状态密 度值从图 5(a)中的 2.2 减小到图 6(a)中的 2.0,说 明Si的3p电子与O的2p电子杂化并不明显。而d 电子在禁带中也有一个峰值,如图 6(b)中箭头所 示。能量状态密度值从原有图 5(b)中的 12.5 减小 到图 6(b)中的 8.5,所以可以认为形成杂质能级的 主要原因是 Si 的 3p 电子和 Ti 的 3d 电子的 ta 态发 生杂化 在禁带中产生施主能级 电子只需要较小的 光子能量就可以从导带跃迁至杂质能级,再进入导 带,使可以吸收波长较长的光,拓宽了TiO,的光响 应范围。从图 5(c)、图 6(c)的总态密度的峰形看 出 价带与导带态密度明显平滑变宽而形成一个连 续体,这说明掺杂后电子的非局域性更加明显,晶体的对称性降低也是其主要原因之一。

3 结论

本文运用基于局域密度泛函和赝势的第一性原 理方法研究了 Si 掺杂金红石相 TiO₂ 晶体结构和电 子性质 结果发现:

1)在一个 Si 原子掺入 TiO₂ 2 × 1 × 1 原胞后形 成 TiSi_xO_{2-x}, *x* = 0.25 的晶体后,晶体结构发生畸 变,电正中心远离 Si,电负中心靠近 Si,键长与电荷 布居发生了明显的变化。

2)在一个 Si 原子掺入 TiO₂ 2×1×1 原胞后, 能带结构中出现了一条杂质能级,该杂质能级的能 量最低点位于导带下方约 0.7 eV 左右,使晶体能响 应 480 nm 左右的可见光。但带隙宽度没有明显减 小,与文献中 N^[36]、C^[79]杂质的掺入使掺入原子的 2p轨道与 O 原子的 2p轨道相互作用来减小禁带宽 度的方法实现对可见光的吸收情况有所不同。

3)通过电子态密度分析,发现形成杂质能级的 主要原因是 Si 的 3p 电子轨道和 Ti 的 3d 电子轨道 发生杂化,其 O 的 2p 电子则贡献很小,价带与导带 态密度明显平滑变宽并形成一个连续体,这说明掺 杂后电子的非局域化性质更加明显。

参考文献:

- [1] Fujishima A Honda A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature ,1972 238 37-38.
- [2]赵宗彦,柳清菊,张瑾,等.3d过渡金属掺杂锐钛矿相 TiO₂的第一性原理研究[J].物理学报,2007,56(11): 6592-6600.
- [3] Asahi R ,Morikawa T ,Ohwaki K ,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science ,

2001 293(5528) 269-271.

- [4] Irie H ,Watanabe Y ,Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO₂-xNx powders
 [J]. J Phys Chem 2003 ,107(23) 5483-5486.
- [5] Lindgren T ,Mwabora J M ,Avendano E ,et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. J Phys Chem B 2003 ,107(24) 5709-5716.
- [6] Morikawa T ,Asahi R ,Ohwaki T ,et al. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. Japan J Appl Phys 2001 A0(6):561-563.
- [7] Khan S ,Al-shahry M ,Ingler W B. Efficient photochemical water splitting by a chemically modified N-TiO₂[J]. Science 2002 297(5590):2243-2245.
- [8] Irie H ,Watanabe Y ,Hashimoto K. Carbon-doped anatase TiO₂ powders as a visible-light sensitive photocatalyst[J]. Chem Lett 2003 32(8) .772-773.
- [9] Choi Y ,Umebayashi T ,Yoshikawa M. Fabrication and characterization of C-doped anatase TiO₂ photocatalysts[J]. J Mater Sci 2004 39(5) 1837-1839.
- [10] Umebayashi T ,Yamaki T ,Tanaka S et al. Visible light-induced degradation of methylene blue on S-doped TiO₂
 [J] Chem Lett 2003 32(4) 330-331.
- [11]赵宗彦 柳清菊 朱忠其 等.S 掺杂对锐钛矿相 TiO₂ 电 子结构与光催化性能的影响[J].物理学报 ,2008 ,57 (6) 3760-3769.
- [12] Yamaki T ,Sumita T ,Yamamoto S. Formation of TiO₂-xFx compounds in fluorine-implanted TiO₂[J]. J Mater Sci Lett 2002 21(1) 33-35.
- [13] 冯庆. 锐钛矿型 TiO₂ 空位缺陷性质的第一性原理研究 [J]. 重庆师范大学学报(自然科学版),2009,26(1): 78-81.

Study of the Optical Properties of Si-doped Rutile TiO₂ by First-principles Theory

FENG Qing

(Key Lab. of Optics and Engineering , College of Physics and Information Technology ,

Chongqing Normal University, Chongqing 400047, China)

Abstract : TiO_2 has been known as an n-type metallic oxide semiconductor and an important inorganic function material. In recent years many theories and experiment researches have reported that in order to decrease the gap, to improve the activity, nonmetallic impurities doping TiO_2 is one of the effective methods. The optical properties and electronic properties of Si-doped rutile TiO_2 are investigated by first-principles pseudopotential calculations based on density-functional theory (DFT) in this paper. In analyzing band structures, densities of states and charge populations, it is found that there is an obvious change of electrical populations. Si-Ti bond lengths vary longer and Si-O bond lengths become shorter. It is discovered that the nearby oxygen atom has the trend of closing to the silicon atom and the nearby titanium atom has the trend of keeping off the silicon atom. Theoretical results show that the band gap of TiO_2 remains few changes and a defect level appears about 2.59 eV above the top of value band in the gap, which result from hybridizing Si 3p states with Ti 3d states. It is concluded that the electronic excitation energy decreases and the 480 nm light can be responded due to the defect level. **Key words** : TiO_2 ; Si-doped ; first-principles theory ; rutile