DOI CNKI 50-1165/N. 20111110. 1503. 019

Ag(PPh₃)₃(CN) · (DMF) · 0.5(H₂ O)配合物的晶体结构^{*}

刘 玺, 王春海, 陈 新, 黄坤林 (重庆师范大学 化学学院, 重庆 400047)

摘要:文章通过 X-射线单晶衍射法测得 Ag(PPh₃)₃(CN) · (DMF) · 0.5(H₂O)的晶体结构。Ag(PPh₃)₃(CN) · (DMF) · 0.5(H₂O)结晶于三斜晶系 ,P-1 空间群 ,晶胞参数 *a* = 13.561(4) Å *b* = 13.921(4) Å *c* = 13.991(4) Å *α* = 85.380(7)° *β* = 87.049(7)° *γ* = 77.149(6)° ,*V* = 2 565.1(13) Å³ ,C₅₈ H₅₃ AgN₂O_{1.5} P₃ ,*M_r* = 1 002.80 ,*Z* = 2 ,*D_c* = 1.298 g/cm³ μ = 0.528 mm⁻¹ , λ (MoK_{*α*}) = 0.710 73 Å ,*F*(000) = 1 038。最终一致性因子 *R*₁ = 0.071 4 ,*wR*₂ = 0.206 7 基于 6 944 个可观察衍射点(*I* > 2*σ*(*I*))和 588 个可变参数(*w* = [σ^2 (F_o^2) + (0.155 0P)²]⁻¹ ,*P* = (F_o^2 + 2 F_c^2)/3 ,*S* = 1.005 (Δ/σ)_{max} = 0.001)。配合物的不对称单元包含了 1 个 Ag(CN) (PPh₃)₃ 基团 , I 个 DMF 分子和 0.5 个游离水 分子。Ag(CN) (PPh₃)₃ 基团中银离子处于变形的四面体配位环境中 ,与 3 个三苯基膦配体和 1 个氰基配位。通过 弱的_π-π ,*C*-H…π 和分子间作用力 ,*Ag*(CN) (PPh₃)₃ 基团互相堆积形成了一个在 *c* 方向具有一维孔道的三维化合物 游离的 DMF 和水分子填充在此孔道中。

关键词 :氰化银基配合物 :晶体结构

中图分类号:0614.81

文献标志码 :A

文章编号:1672-6693(2011)06-0089-03

金属氰化物类化合物早已被人们认识并用于工 业生产,且一直是化学、材料等相关领域科学工作者 的一个研究热点[1-2]。这类化合物已应用于从矿石 中提炼贵重金属以及贵重金属的电镀过程,显示出 了重要的商业价值^[3]。同时,这类化合物在催化 剂^[4]、高 Tc 温度的分子基磁体^[5-8]、包合物^[9]、无机-有机复合分子筛材料[10-11]等领域有潜在的应用价 值。长期以来,本课题组合成了大量的氰化亚铜 类[12-16]、氰化银类配合物[17-19],系统地研究了这类 配合物的结构、发光性能以及结构与发光性能的构 效关系 以期实现对这类配合物材料结构和性能的 调控 从而为制备具有实际应用价值的发光材料提 供理论。课题组曾报道了氰化银基配合物 Ag(PPh₃)₃(CN) · (DMF) · 0.5(H₂O)的合成和发 光性质[20],并通过元素分析、红外光谱以及配位空 间构型的化学合理性等推测出了其合理的分子结 构。本文将详细地介绍通过 X-射线单晶衍射方法 测得的标题化合物的晶体结构。

选取大小为 $0.5 \times 0.1 \times 0.1 \text{ mm}^3$ 的单晶置于 Rigaku Mercury CCD X-射线单晶衍射仪上,采用 MoK_{α} 射线 $\lambda = 0.71073$ Å),在 293 K 下 $3.01^{\circ} \leq \theta \leq 25.35^{\circ}$ 的范围内以 ω 扫描方式搜集到 9 329 个 独立衍射点(R(int)=0.0347),其中 $I \ge 2\sigma(I)$ 的 6944个可观察衍射点用于结构修正。所有的衍射 强度数据经过 CrystalClear 软件校正和还原^[21],结 构解析采用直接法并经过最小二乘法修正。所有的 非氢原子通过差傅立叶合成获得,并经过各向异性 修正。氢原子的坐标采用理论模型产生,且不参与 结构精修。配合物中游离溶剂水分子上的氢原子既 不能通过差傅立叶合成获得,又不能通过合适的理 论模型加氢,故没有添加氢原子。所有的计算都由 Siemens SHELXTL TM version 5 晶体学程序包完 成^[22]。

X-射线单晶衍射结果表明,配合物晶体属于三 斜晶系,P-1空间群,晶胞参数 $a = 13.561(4)Åb = 13.921(4)Åc = 13.991(4)Å\alpha = 85.380(7)°\beta = 87.049(7)°\gamma = 77.149(6)°, <math>V = 2.565.1(13)Å^3$, $D_c = 1.298 \text{ g/cm}^3 Z = 2 \text{ (分子式为 } C_{58}H_{53}AgN_2O_{1.5}P_3$, $M_r = 1.002.80 \mu = 0.528 \text{ mm}^{-1}$,F(000) = 1.038。最终一致性因子 $R_1 = 0.071.4$, $wR_2 = 0.206.7$, $w = [\sigma^2(F_o^2) + (0.155.0P)^2]^{-1}$, $P = (F_o^2 + 2F_c^2)/3$, S = 1.005,优化后的最大参数位移(Δ/σ)_{max} = 0.001 残余电子密度最高峰($\Delta\rho$)_{max} = 1.192 e·Å⁻³,

收稿日期 2011-06-14 修回日期 2011-09-22 网络出版时间 2011-11-10 15 03

资助项目 国家自然科学基金(No. 21071156);重庆市科委自然科学基金(No. CSTC2010BB8325);重庆师范大学重点项目(No. 08XLZ09)

作者简介:刘玺,男,教授,博士,研究方向为无机合成和功能材料。

网络出版地址 http://www.cnki.net/kcms/detail/50.1165.N.20111110.1503.201106.89_019.html

最低峰 ($\Delta \rho$)_{min} = $-0.503 \text{ e} \cdot \text{Å}^{-3}$ 。

标题配合物的非氢原子坐标和各向同性温度因 子列于表1.主要键长和键角列于表2。

表1	原子坐标和等效热参数
· L \ 1	

原子	x/	y/	z/	$U_{ m eq}/$
	$(\times 10^4)$	$(\times 10^4)$	$(\times 10^4)$	$(Å^2 \times 10^3)$
Ag(1)	7 461.7(2)	6 849.9(2)	7 293.6(2)	52.5(1)
P(1)	7 536.1(9)	5 086.0(8)	8 060.6(8)	48.9(3)
P(2)	6 393.4(9)	8 223.2(8)	8 339.5(8)	48.4(3)
P(3)	6 797.9(9)	7 035.2(8)	5 558.8(8)	48.9(3)
0(1)	8 972(4)	7 180(4)	7 193(4)	67.1(2)
N(1)	9 720(4)	7 381(4)	7 099(6)	128(3)
Q(101)	8 299(3)	4 089(3)	7 393(3)	53(1)
Q 102)	9 321(4)	4 061(4)	7 229(4)	68(2)
Q 103)	9 927(4)	3 340(4)	6 723(4)	82(2)
C(104)	9 517(5)	2 617(4)	6 347(5)	84(2)
C(105)	8 507(5)	2 645(4)	6 481(5)	86(2)
C(106)	7 897(4)	3 367(3)	7 013(4)	67(2)
C(107)	8 120(3)	4 797(3)	9 222(3)	51(1)
Q(108)	8 241(4)	5 554(4)	9 744(3)	67(2)
Q(109)	8 741(5)	5 349(5)	10 598(4)	84(2)
Q(110)	9 081(4)	4 422(5)	10 956(4)	79(2)
Q(111)	8 983(4)	3 641(4)	10 451(4)	76(2)
0(112)	8 502(4)	3 819(4)	9 572(4)	65(2)
Q 113)	6 307(4)	4 743(3)	8 217(3)	52(1)
Q(114)	5 625(4)	5 046(4)	7 482(3)	58(1)
Q(115)	4 678(4)	4 821(4)	7 554(4)	75(2)
Q(116)	4 387(4)	4 325(4)	8 363(4)	81(2)
Q(117)	5 044(5)	4 041(5)	9 099(5)	95(2)
Q(118)	5 994(4)	4 236(4)	9 023(4)	79(2)
Q(201)	5 051(3)	8 238(3)	8 574(3)	50(1)
0(202)	4 310(4)	9 069(4)	8 787(4)	69(2)
Q(203)	3 323(4)	9 009(4)	8 973(4)	80(2)
C(204)	3 033(4)	8 142(4)	8 933(4)	75(2)
C(205)	3 741(4)	7 305(4)	8 706(4)	78(2)
C(206)	4 730(4)	7364(3)	8 531(4)	62(2)
Q(207)	6 379(4)	9 487(3)	7 874(3)	55(1)
Q(208)	6 246(4)	10 288(4)	8 463(4)	70(2)
Q(209)	6 183(5)	11 236(4)	8 044(5)	85(2)
Q(210)	6 273(5)	11 392(4)	7 054(5)	86(2)
Q(211)	6 402(5)	10 634(4)	6 489(5)	85(2)
Q(212)	6 460(4)	9 692(4)	6 892(4)	66(2)
Q(213)	6 877(4)	8 202(3)	9 540(3)	53(1)
Q(214)	6 291(5)	8 156(4)	10 381(3)	67(2)
Q(215)	6 747(5)	8 103(4)	11 271(4)	80(2)
Q(216)	7 730(5)	8 116(4)	11 317(4)	88(2)
Q(217)	8 315(5)	8 169(5)	10 499(5)	94(2)
Q(218)	7 890(4)	8 210(4)	9 602(4)	76(2)
Q(301)	7 473(3)	6 127(3)	4 739(3)	51(1)

续表1							
原子	x/	y/	z/	$U_{\rm eq}/$			
	$(\times 10^4)$	($\times 10^4$)	($\times 10^4$)	(${\rm \AA^2 \times 10^3}$)			
0(302)	7 303(4)	6 199(4)	3 789(3)	69(2)			
0(303)	7 836(4)	5 473(5)	3 197(4)	87(2)			
0(304)	8 537(5)	4 708(4)	3 575(4)	80(2)			
0(305)	8 739(5)	4 653(4)	4 531(5)	92(2)			
C(306)	8 215(5)	5 354(4)	5 101(4)	76(2)			
Q(307)	6 914(4)	8 165(3)	4 847(3)	57(1)			
C(308)	6 196(5)	8 695(4)	4 243(4)	83(2)			
C(309)	6 402(6)	9 497(5)	3 658(5)	110(3)			
Q 310)	7 279(6)	9 776(5)	3 679(5)	106(2)			
Q 311)	8 008(5)	9 255(4)	4 304(5)	98(2)			
0(312)	7 829(4)	8 462(4)	4 878(4)	76(2)			
Q 313)	5 464(3)	7 011(3)	5 455(3)	49(1)			
0(314)	4 783(4)	7 629(4)	6 006(4)	78(3)			
0(315)	3 749(4)	7 604(5)	6 033(5)	83(2)			
0(316)	3 427(4)	6 965(4)	5 503(4)	76(2)			
0(317)	4 098(4)	6 344(4)	4 965(4)	80(2)			
Q 318)	5 107(2)	6 356(2)	4 949(2)	72(2)			
0(1)	9 217(2)	11 148(2)	9 522(2)	322(5)			
N(2)	9 485(2)	10 220(2)	8 187(2)	197(3)			
((2)	10 398(2)	9 613(2)	8 492(2)	280(5)			
((3)	9 178(5)	10 022(4)	7 329(4)	200(4)			
C(4)	8 981(5)	10 910(4)	8 694(4)	251(4)			
O(1W)	1 024(14)	8 464(15)	601(2)	531(3)			

 $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$;除 O(1W)原子的位置占有率为 0.5 外,其它原子的位置占有率均为 1。

表 2 部分键长和键角

化学键	键长/Å	化学键	键角/(°)
Ag(1)-C(1)	2.192(5)	C(1)-Ag(1)-F(1)	110.7(1)
Ag(1)-P(1)	2.582(1)	C(1)-Ag(1)-F(3)	107.3(2)
Ag(1)-P(3)	2.606(1)	((1)-Ag(1)-P(2)	103.8(1)
Ag(1)-P(2)	2.626(1)	P(1)-Ag(1)-P(2)	112.85(4)
C(1)-N(1)	1.109(8)	N(1)-((1)-Ag(1)	176.1(6)

图 2 配合物的晶体堆积图

从图 1 可以看出,中心金属银离子(Ag⁺)处于 一个变形的四面体配位环境中,分别与 1 个氰基配 体碳原子和 3 个三苯基膦配体的磷原子配位。由于 三苯基膦配体具有较大的空间构型,氰基配体通过 碳端和银离子配位后没有再和其它银离子通过氮端 配位形成一维化合物,而是仅形成了一个单核银配 合物。这和之前通过元素分析、红外光谱以及配位 空间构型的化学合理性等推测出的配合物可能结构 完全一致^[9]。

从图 2 可以看出 配合物中的 Ag(PPh₃)₃(CN) 次级结构单元通过弱的 π - π 、C-H... π 作用^[23]、以及 分子间作用力形成了一个在 c 方向具有一维孔道的 三维结构 游离的 DMF 和水分子填充在此孔道中。

参考文献:

- [1] Iwamoto T. Comprehensive supramolecular chemistry [M].
 Oxford Permagon Press ,1996 6 :643-690.
- [2] Dunar K R ,Heintz R A. Chemistry of transition metal cyanide compounds : modern perspectives [J]. Prog Inorg Chem ,1997 45 :283-391.
- [3] Puddephatt, R J. Comprehensive coordination chemistry
 [M]. Oxford Permagon Press ,1987 5:861-923.
- [4] Fehlhammer W P ,Fritz M. Emergence of a CNH and cyano complex based organometallic chemistry [J]. Chem Rev , 1993 93 :1243-1280.
- [5] Entley W R ,Girolami G S. High-temperature molecular magnets based on cyanovanadate building blocks : spontaneous magnetization at 230 K [J]. Science ,1995 ,268 : 397-400.
- [6] Mallah T , Thiebaut S , Verdaguer M. High-T_c molecular-based magnets: ferrimagnetic mixed-valence chromium
 (Ⅲ)-chromium(Ⅱ) cyanides with T_c at 240 and 190 kel-vin [J]. Science ,1993 262 :1554-1557.
- [7] Sato O ,Lyoda T ,Fujishima K. Electrochemically tunable

magnetic phase transition in a high- T_c chromium cyanide thin film [J]. Science ,1996 271 :49-51.

- [8] Ferlay S ,Malleh T ,Ouakès R ,et al. A room-temperature organometallic magnet based on prussian blue [J]. Nature , 1995 378 :701-703.
- [9] Iwamoto T. Past present and future of the clathrate inclusion compounds built of cyanometallate hosts [J]. J Inclusion Phenom ,1996 24:61-132.
- [10] Janiak C. Functional organic analogues of zeolites based on metal-organic coordination frameworks [J]. Angew Chem Int Ed Engl ,1997 36 :1431-1434.
- [11] Hoskins B F ,Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH₃)₄ I CuIZnII(CN)₄] and Cu¹[4 , 4' A'' A'''-tetracyanotetraphenylmethane]BF₄ · xC₆H₅NO₂ [J]. J Am Chem Soc ,1990 ,112 :1546-1554.
- [12] Liu X ,Guo G C ,Wu A Q ,et al. Two novel halogeno(cyano) cuprates with long-lived and high luminescence [J]. Inorg Chem 2005 44 :4282-4286.
- [13] Liu X ,Guo G C ,Fu M L ,et al. Three halogeno(cyano) cuprates with 1-D helical chains and their efficient luminescence [J]. Inorganica Chimica Acta 2006 359 :1643-1649.
- [14] Liu X ,Guo G C. A volcano-group-like halogeno(cyano) cuprate with efficient green luminescence [J]. Cryst Growth Des 2008 & :776-778.
- [15] Liu X ,Guo G C. A novel copper cyanide complex with a layered structure [J]. Aust J Chem 2008 61 :481-483.
- [16] Liu X ,Huang K L. A twelve-connected dodecanuclear copper cluster with yellow luminescence [J]. Inorg Chem , 2009 48 :8653-8655.
- [17] Liu X ,Guo G C ,Fu M L ,et al. Three novel silver complexes with ligand-unsupported argentophilic interactions and their luminescent properties [J]. Inorg Chem ,2006 ,45 : 3679-3685.
- [18] Liu X , Guo G C , Fu M L ,et al. Two novel halogeno(cyano) argentates with efficient luminescence [J]. Dalton Trans 2006 884-886.
- [19] Liu X ,Huang K L ,Liang G M ,et al. Molecular design of luminescent halogeno-thiocyano-d10 metal complexes with in situ formation of thiocyanate ligand [J]. Cryst Eng Comm 2009 ,11 :1615-1620.
- [20] 刘玺,谭晗,黄坤林. Ag(PPh₃)₃(CN) · (DMF) · 0.5 (H₂0)配合物的合成和发光性质[J].重庆师范大学 学报:自然科学版 2008 25(2):67-70.

- [21] Rigaku molecular structure corporation. Software user 's guide for the rigaku R-Axis and mercury and jupiter CCD automated X-ray imaging system[M]. Uath :CrystalClear 1. 35. Rigaku molecular structure corporation 2002.
- [22] SHELXTL. Reference manual[M]. 5th ed. Madison ,WI : Siemens Energy & Automation Inc ,1994.
- [23] Spek A L. Single-crystal structure validation with the program PLATON [J]. J Appl Cryst 2003 36:7-13.

The Crystal Structure of Coordination Compound Ag(PPh₃)₃(CN) · (DMF) · 0.5(H₂O)

LIU Xi , WANG Chun-hai , CHEN Xin , HUANG Kun-lin

(College of Chemistry , Chongqing Normal University , Chongqing 400047 , China)

Abstract : The title compound , Ag(PPh₃)₃(CN) · (DMF) · 0.5(H₂O) , crystallizes in triclinic , space group *P*-1 with *a* = 13.561 (4) Å , *b* = 13.921(4) Å , *c* = 13.991(4) Å , α = 85.380(7)° , β = 87.049(7)° , γ = 77.149(6)° , *V* = 2565.1(13) Å³ , *D_c* = 1.298 g/cm³ , *Z* = 2 , C₅₈ H₅₃ AgN₂O_{1.5}P₃ , *M_r* = 1 002.80 , μ = 0.528 mm⁻¹ , λ (MoK_{α}) = 0.710 73 Å and *F*(000) = 1 038. The final *R*₁ = 0.071 4 and *wR*₂ = 0.206 7 for 6 944 observed reflections ($I > 2\sigma(I)$) with 588 variable parameters ($w = [\sigma^2(F_o^2) + (0.155 \text{ OP})^2]^{-1}$, *P* = ($F_o^2 + 2F_c^2$)/3), *S* = 1.005 , (Δ/σ)_{max} = 0.001). The largest peak and hole on the final difference Fourier map were 1.192 and -0.503 e · Å⁻³ , respectively. The compound comprises a separated Ag(CN)(PPh₃)₃ moiety , one isolated N , N '-dimethylformamide (DMF) solvent molecule , and a half water molecule in the crystallographic asymmetric unit. The silver cation in the Ag(CN) (PPh₃) moiety locates in a distorted tetrahedral coordination environment , and is coordinated by three triphenylphosphor (Ph₃P) ligands and one cyanide group. The Ag(CN) (PPh₃) moieties stack together via weak π - π , C-H... π , and intermolecular interactions to form a 3-D structure with a 1-D channel along the c direction , in which the DMF and water molecules locate. **Key words** : AgCN coordination compound ; crystal structure

(责任编辑 欧红叶)