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Periodic Solutions for a Discrete Mutual System with Delays
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Abstract In this paper a discrete-time mutual system !
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is considered. By using coincidence degree and the related continuation the orem as well as prior estimates easily verifiable
sufficient conditions for the existence of positive periodic solutions are obtained 1. e. if the following conditions i r;
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i=12 k j=12 ab Z—-R"arewperiodic ii a > (k—) b > (r—z) iti 7' > a"k) hold then system has
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at least an w periodic solution. Our results are important complement to earlier results in the literature.
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1 Introduction

Facultative mutualism means that two species cohabit a common habit and each species enhances the average
growth rate of the other ' . In 1997 he and Gopalsamy ° investigated the stability and persistence of the following
mutual system with time delay by Liapunov’s second method
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where r, k, i=1 2 a b are positive constants x ¢ and y ¢ are respectively densities of two species at time
¢t r,;1s the intrinsic growth rate of two species k; is the ecosystem support or environmental carrying capacity for two
species @ and b are the rates of transmission between two species. For Eq. 1 Meng and Wei * considered the
stability and bifurcation by analyzing the associated equation and using the normal form method and center manifold
theorem. Xu and Liao * made a discussion on the existence of positive solution of system with periodic parameters
and impulses.

It is well known that any biological or environmental parameters are naturally subject to fluctuation in time. It
is necessary and important to consider models with periodic ecological parameters. Thus the assumption of periodici-
ty of the parameters is a way of incorporating the periodicity of the environment. Based on the viewpoint we modify

1 as follows
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Furthermore discrete time models governed by difference equations are more appropriate to describe the dynamics
relationship among populations than continuous ones when the populations have non-overlapping generations. Also
discrete time models can provide efficent models of continuous ones for numerical simulation. Therefore it is rea-
sonable to study time mutual systems governed by difference equations. There are some papers which deal with this
topic > .
The principle object of this article is to propose a discrete analogue system 2 and explore its dynamics.
That is following the methods in 10-11  we derive a discrete analog of 2 and apply the Mawhin’s continuous
theorem " to study the existence of positive periodic solutions of discrete analog of 2 .

The remainder of the paper is organized as follows in Section 2 with the help of differential equations with
piecewise constant arguments we first propose a discrete analogue of system 2 modelling the dynamics of time

non-autonomous mutual system with time delay. In Section 3 a easily verifiable sufficient condition for the exist-

ence of positive solutions of difference equations is obtained.

2 Discrete analogue of system 2

In the following we will discrete the system 2 . Following the lines of 10-11  we assume that the average
growth rates in system 2 change at regular intervals of time we can incorporate this aspect in 2 and obtain the

following modified system

1 x t -7 1
1 = t 1 - + t t
Xt n kot “ y 3
1 y t -7 t
—y t = t 1 - +b 1t i
vy 2 k, t *
where 120 1 2 t denotes the integer part of t t € 0 + o . Equations of type 3 are known as differ-

ential equations with piecewise constant arguments and these equations occupy a position midway between differenti-
al equations and difference equations. By a solution of 3  we mean a functionx = «x y ' which is defined for
t € 0 + o and has the following properties

1 x is continuous on 0 + o

2 The derivatives dv t and dy ¢ exist at each point £ € 0 + o with the possible exception of the

dt dt

pointst € 01 2 where left-sided derivatives exist.

3 The equations in 3 are satisfied on each interval k£ k+1 withk =0 1 2

We integrate 3 on any interval of the form £ & + 1 £=0 1 2 and obtain fork <t < k+1 k =
01 2
xt =xk exp rlkl—M+akyk t—k
k, k
4
xt =y k exp rzkl—M+bkxk t—k
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Let t—k +1 then 4 takes the following form
x k+1 =xk expr k I—M +a k yk
k, k
5
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which is a discrete time analogue of system 2 . Here k = 0 1 2

3 Existence of positive periodic solutions

For convenience and simplicity in the following discussion we always use the notations below throughout the
w-1
paper I, = 012 w -1 ]:Lka fo=min f k" =max fk where f £k is an w-
w -0 kel kel

periodic sequence of real numbers defined for k£ € Z. We always assume that
Hl r, i=12 k j=12 abZ-R arewperiodic i.e. 1, k+w =r,t 1=12 k kt+o
=k k j=12 ak+wo =ak bk+w =0bkforanyk e Z
M M
H2 it > (1) e > ()
ky k,

In order to explore the existence of positive periodic solutions of 5 and for the reader’ s convenience we
shall first introduce a few concepts and results without proof borrowing from 12 .

Let X Y be normed vector spaces L Dom L CX —Y is a linear mapping N X—Y is a continuous map-
ping. The mapping L will be called a fredholm mapping of index zero if dimKer L = codim Im L < + o and Im L is
closed in Y. If L is a fredholm mapping of index zero and there exist continuous projectors P X—X and ( Y—Y
such that Im P = Ker . Tm L = Ker Q =Im I —Q . It follows that L | Dom L N Ker P [ - P X—Im L is
invertible. We denote the inverse of that map by K,. If 2is an open bounded subset of X  the mapping N will be
called L-compact on 2if QN (2 is bounded and K, I —Q N (2—X is compact. Since Im ( is isomorphic to
Ker L there exist isomorphisms / Im (—Ker L.

Lemma 1 " Continuation Theorem Let L be a fredholm mapping of index zero and let N be L-compact on
. Suppose

a ForeachAe 0O 1 every solution x of Lx = ANx is such that x ¢ 9

b QNx# 0 for each x e Ker LNA2 and deg JON 2N JKerL O #0

Then the equation Ix = Nx has at least one solution lying in Dom L N (2.

Lemma2 " letg Z— Rbe w periodic i.e. g k+w =g k then for any fixed k, k, e, and any

w-1

w-1
keZ one hasg k < g k, +Z\gs+1 —gs | gk ng2+2‘g3+1 -g s |
s=0 s=0

Lemma 3 £ k 5 k "is an w periodic solution of 5 with strictly positive components if and only if
In £ k In § & "is an @ periodic solution of
x k+1 —-xk =1k l_expxkk—krk +a k exp y k
' 6
yk+1 -y k =1k 1—6Xpykk‘k7k +b k oexp v k
2
Define I, = z= zk zk eR kel
Fora = a, a, ' € R® define |q| = max |q,| |a,| . Let [ C I, denote the subspace of all w periodic
sequences equipped with the usual supremum norm || - || i.e. |z = max, - lz k | foranyz = z k

keZ el”. ltis easy to show that [ is a finite-dimensional Banach space.
Let

w-1
lg = z= zk el"’sz =0 7
=0

I8= z= 2k el’zk =heR kel 8
then it follows that /; and [ are both closed linear subspaces of [ and [* = [J +[? dim [ = 2. In the following

we will be ready to establish our results.
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Theorem 1 In addition to conditions H1 and H2  suppose that H3 r' >a" k) holds then the sys-

tem 5 has at least an w periodic solution.
Proof. LetX =Y =1["

Ls k =zk+1 —zk =(x"+1 ok 9
yk+1 -y k
r, kexpx k-1 k
k- Pk +akexpykg
Nz k =0 ' 0 10
k k-7 k
Erzk _b ekayk 4 +b k exp x k E
2

where z € X keZ. Then it is trivial to see that L is a bounded linear operator and Ker L = [ Im L =[] and

dim Ker L =2 =codim Im L.

then it follows that L is a fredholm mapping of index zero. Define
1 w-1 1 w-1
Py =—2)% ye X.Qz=—)z zeVY
Y=, ;}y s yeX Qz ° ;)z s zZe
It is not difficult to show that P and () are continuous projectors such as

ImP =KerL ImL =KerQ =Im I -0Q

Furthermore the generalized inverse to L k, Im L—Ker PN Dom L exists and is given by

w-1

w-1
- - 1 -
sz=223—fz w-52ZS
s=0 w =0

Obviously QN and K, I - N are continuous. Since X is a finite-dimensional Banach space using the Ascoli-
Arzela theorem it is not difficult to show that K, I—(Q N (2 is compact for any open bounded set 2C X . More-
over QN (2 is bounded. Thus N is L-compact on (2 with any open bounded set 2C X.

Now we are at the point to search for an appropriate open bounded subset (2 for the application of the continu-
ation theorem. Corresponding to the operator equation Lz = ANz A € 0 1  we have

ro k exp x k-1 k

xk+1 —-x k =Xxr k +a k exp yk

k, k
11
k k-7 k
y k+1 -y k =/\r2k—r2 ap Y T +b k exp x k
ky k
Suppose that z k = x k y k " e X is an arbitrary solution of system 11 for a certain Ae 0 1  sum-
ming both sides of 11 from 0 to w — 1 with respect to k respectively we obtain
w-1 w-1
Z[rlkexpxk—’rk ]—Zakexpyk - Fo
=0 ky k =0 o

w-1 -1
Z[rzkexpyk—rk ]—Zbkexpxk = o
k=0 kz k k=0

It follows from 12 and assumes H3 that
w-1

w-1
k k-7 k _
Z‘xk+l —xk‘ﬁ)\{z‘[rlk T exXp ¥ T +ak oexp y k ]}sZrlw 13
k=0 k=0

ky k
w-1 w-1
k k-7 k _
Z‘yk.l_] _yk ‘g)\{z[rzk _r2 exp y T +bkeprk ]}$2r2w 14
=0 =0 k, k
In view of the hypothesis that z = z & e X there exist £, n, €/, such as
x & =?1ilnxk x o, =rknaxxk y & =£nilnyk y M, =Ikna}xyk 15

From the first equation and the second equation of 12 we have
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;2w<;[r2kexpyk—7k ]$(;—2)weXpyn2
¢ 2

which lead to

0N 0O 0" 0O
X om >lnB r\ By m >ln% n\ H 16
A(7) B A(7) B

In view of 11 it is clear that
Vg =0Vyn =0V & <s0Vy§g <0 17
where V denotes the backward difference operator i.e. Vx k =x k -x k-1 Vy kb =y kb -y k-1 .
It follows from 11 that

' m €Xp x 1 - T M

- =0 18
' M ko, tamn exp y mn
r, M, T2 My EXP Y N T T M +bm, exp x M, =0 19
ky
r & _h & expkx 6 -7 & +a & exp y & <0 20
L&
ng -2 Ekay?_sz +b & expr g, <O 21
2 2
In the sequel we consider two cases.
a Ifx & =1y n, then it follows from 18 that
TM eXp X M T 1) romexp x &
r +a ex = =
1 T U Py m ko, ko,
Then rnm +amn expx & = oM exp X g
ky m
k r k.r M
which leads to x & $ln[ 1 11 ]$ln[#] 22
o o—a o ko ry — ak,
Then
k r kr M
Y& <ym <x & sln[ e ]<1[#] 23
o o—a o ko ry — ak,
In view of Lemma 3 16 22 and 23 that
- M
x ks« ¢ +2\x s+1 —x s \$1n[7k1r1 ] +2rw = m, 24
s=0 r,—a
w-1 D fl |:|
xk zxm - Y |xs+1 ~x s [=InHr\ B2ne =M, 25
HE
1
kr M
yk sy & +Z‘ys+l -y s |[<In L1 ] + 25w = m, 26
$=0 r, — ak,
0" O
Yk zym - X lys+l —ys [=2hH ) F2ne =M, 27
T
2
Thus
rknez%ka <max |m,| |[M,| =S, Iglgz(yk <max |m,| |M,] =S, 28

b Ifx & <y m, then it follows from 20 and 21 that

rp & exp x & -7 &
=<
a & exp y & k&
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rn & expy & —T16&

b & exp x & <

k2 gz
Then a & expy & 0= nog e v om

ki &
and b & exp x & < & P Y

ky &

m
which lead to aexp y & [r‘ exp x 7, 29
and blexp x & [—2 exp y 1, 30
ky

Ify § =« m, then by the condition H2 i 29 can not hold true. Ify &, <x m,  then by the condi-

tion H2 ii 30 can not hold true. Then case b can not occur.
Obviously S, S, are independent of the choice of A € 0 1 . Take M =S, +S, +S, where S, is taken

sufficiently large such that max |[In x* | |[In y* | <S8, where x* y* "is the unique solution of the fol-

lowing equation

T —(lr?)exp x +aexpy =0

_ 31
fz—(ri)expy +aexp x =0
ky
Now we have proved that any solutionz = z & = x k y k ' of 11 in X satisfies || z|| <M k e Z
Let2 = z= z k eX |z|| <M thenitis easy to see that £ is an open bounded set in X and veri-
fies requirement a of Lemma 1. Whenz € 92 N Ker L z = x k y k " is a constant vector in R’ with
| z| =max |x| |y| =M. Then
L, - ( )ex x +aex U
o' . p pYy 0 /o
ONz = _ 7 ( ) 32
% ( " ) = o ‘0
) Zlexp ¥y +aexp x
k,
G- <
Now let us consider homotopicp x y u =uQNz+ 1 -pu Gzpue 01 where Gz = 0 k, 0
’
-

2
Letting J be the identity mapping and by direct calculation we get

deg JON x y " o0 NkerL 0O =deg QN xy " o0 Nkerl 0 =
deg p xy 1 d2NkerL O =deg d xy0 d2Nkerl 0 =

O 0 Zex x 0 U
sign%ﬂetg (kl) ' _ %: 1gn[(‘])”(kz) exp x+y =1#0
L]

5 H 0 - (LZ)

0O 0 k, exp ¥y
By now we have proved that (2 verifies all requirements of Lemma 1 then it follows that Lz = Nz has at least one
solution in Dom LN (2 thatistosay 6 has at least one w periodic solution in Dom LN sayz* = z" k =

x  k oy k" Letut k = exp vy k exp y  k then by Lemma 3 we know that u™ k is

an o periodic solution of system 5 with strictly positive components. The proof is complete.
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