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Abstract: In this paper. a class of logistic model with delay is considered. By applying the frequency domain approach
and analyzing the associated characteristic equation, the existence of bifurcation parameter point is determined. If the
coefficient 7 is chosen as a bifurcation parameter, it is found that Hopf bifurcation occurs when the parameter r passes
through a critical value 7,. The length of delay which preserves the stability of the positive equilibrium is calculated to

be between zero and a certain positive constant 7. Some numerical simulations show that when the delay r passes

through the critical value z,, the positive equilibrium is locally stable and unstable when the delay z=>1,.
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0 Introduction

In specifically ecological environment, biologi-
cal activity of populations is complex and diverse.
A large number of studies have shown that delay
usually occurs in the biological activity, It is of
great concern to biologists that how delay has
effect on biological populations. There were a lot
of literatures on stability of equilibrium point of
Logistic model since Cushing'"’ found that a delay
could undermine the stability of positive equilibri-
um and caused periodic oscillations. Cushing™’ in-

vestigated the Hopf bifurcation of the following

model
AN = N@) [a—8NG)—
dr
y(JOQ:K(s)N(t—S)ds)z] D
where K = % exp(?)’ 7 > 0 is a parameter
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and a, . ¥ are all positive constants. Gopalsamy'*’
studied the conditions of existence of Hopf bifurca-
tion for the following system

du() o
“a —ru(t)[l K

and gave an approximation of Hopf bifurcation pe-

u(t—h)] (2)

riodic solutions, where K, r are constants and h >
0 is a parameter. Huang and Chen™ investigated
the unconditional stability and Hopf bifurcation of
the following Logistic model with delay

INED — N [a—pNG—o) —

ylt - K(—s)N(s)ds] (3
where a, 8, 7 are positive constants,t is nonnega-
tive delay parameter and K(z) = ze ‘. In this pa-
per, we will continue to study the local Hopf bi-
furcation for system (3). It is worth pointing out
that the aforementioned work (see [1-3]) is used

the state-space formulation for delayed differential
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equations, known as the “time domain” ap-

proach"’. Yet in this paper, we will use the fre-
quency domain approach which was initiated and
developed by Allwright™, Mees and Chua'®, and
Moiola and Chen'"*. This methodology has some
advantages over the classical time-domain meth-
ods. A typical one is that it utilizes advanced com-
puter graphical capabilities to bypass quite a lot of
profound and difficult mathematical analysis.

In this paper, we will devote our attention to
finding the Hopf bifurcation point of model (3).
Meanwhile, the length of delay preserving the sta-
bility of the positive equilibrium is estimated. The
main methodology of study is the frequencydomain
approach. To the best of our knowledge, there are
few papers'”'®! that deal with the research of Hopf
bifurcation by the frequency-domain approach.

The remainder of the paper is organized as fol-
lows: in Section 1, by means of the frequency-do-
main approach formulated by Moiola and Chen 7,
the existence of Hopf bifurcation parameter is de-
termined and shown that Hopf bifurcation occurs
when the bifurcation parameter exceeds a critical
value. The length of delay preserving the stability
of the positive equilibrium is estimated in Section
2. In Section 3, some numerical simulation are
carried out to verify the correctness of theoretical
Finally, some conclusions and

analysis results.

discussions are given in Section 4.

1 Existence of Hopf bifurcation
In Eq. (3), let

x, (1) :Jtr (t—s)e 2 N(s)ds

- 1)
) :L e 7V N(s)ds
Then (3) becomes
%z NO[a —NG—2) —72: (D]
dl’éi’)z—n(z) Lo (5)
dl'z([)_ _ X
L= N~ (1)

It is easy to see that Eq. (5) has a unique positive

ey a
equilibrium E,(xy, 20, x0), where x=-"—.
B+

We can rewrite the nonlinear system (5) in a
matrix form as

dz () _

a Ax() + H(x) 6)
where x = (N(), 21 () 2, DT
a 0 0
A=|0—1 1
1 0—1
—BNNG—7) —yNU(Dx, (1)

H(x) = 0
0

Choosing the coefficient t as a bifurcation and in-
troducing a “state-feedback control” u = g(y(zt —1);
), where y() = (3, (D), v, @), y;())", we obtain

a linear system with a non-linear feedback as follows

%: Ax + Bu
) —C. D)
u= glyG—o); v
where
100
B=C=|010/|.ulgly —0, t]=
001
—Byi DOyt — ) — yyi (D y, ()
0
0

Next, taking Laplace transform on (7), we obtain
the standard transfer matrix of the linear part of
the system:

G(s; ) = C[sI — A] 'B

Then
s—a
~c oL — 1 1 1
GGss o) G—a)(s+D?* s+1 (s+1)? &
B !
GHDG—a) GHD

If this feedback system is linearized about the equi-
librium y = 3= —C(xy, a0+ 20)" ,then the Jaco-
bian of (8) is given by

J(o) = o8 =

. T
Oy | = y= —C(x s sx )
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2z Be T+ rx, Yxr, O

0 0 0 9
0 0 0
Set
h(X, 55 v = det [AI — G(s; D J (o) | =
, xofle T+ vx, &
/1~_[ Bs*ay +(s+1))/2(s*a)]/1:o
(10)

Then, we obtain the following results by applying
the generalized Nyquist stability criterion with s =
iw.

Lemma'®! If an eigenvalue of the corresponding
Jacobian of the nonlinear system, in the time do-
main, assumes a purely imaginary value iw, at a
particular r = 7, then the corresponding eigenval-
ue of the constant matrix GCiw,; 7o) J(7y) in the
frequency domain must assume the value —1 +
10 at 7 = 7.

To apply Lemma 1, let A = A (iw; 7) be the ei-
genvalue of GUw; 7)J (r) that satisfiesd (w3 ) =
—1 + 0:i. Then

) — 1 pToPe A Y

lw) — «a

h(719 iwo; To

Y, o
T ot D o—a an

Separating the real and imaginary parts, we obtain

(1 — w?)xo Peos wo 7o T 2w0 & offsin wot, =
a— wla + 2w’ — 27xy+ wlvxo (12)

2{,,0 20 f3cos woT) — (1 — wi) Ioﬁsin Wy Ty =
2 woa — w, + wé* 2 wo Yy (13

Then we have
Pi+ P,;= Pi+ P} (14)
where
Pi=00 — o) xfs Pr= 2w, x0f3>
P,=a — wla + 20— 2Vx0+ 0’¥x0s P, =
2woa — wo T @l — 2w, Yx,
From (14), we can calculate the value of w,, then

from (12) and (13), we can obtain

% 1{2/371 ~+ arcsin Py

JP+ P

_6:| (k =0, 13 23"')

(©24)
(15)
where 0 satisfies
1—w?
tan 0 = (16)
2&)0

According to the discussion above, we have the
following conclusion.

Theorem 1 (Existence of Hopf bifurcation pa-
rameter) For system (5), If w, is the positive real

root of (14), then Hopf bifurcation point is

. P
Tk—1|:2/€7f + arcsin —— —— 0}(13 =0, 1, 2,=+*)

@ J P+ P;

where 0 satisfies (16).
2 Estimation of the length of delay to

preserve stability

In the present section, we will obtain an estimation
7 for the length of the delay ¢ which preserves the sta-
bility of the positive equilibrium E, (xy, x5 20) s 1. €. »
E,(xy» 205 x0) is asymptotically stable if 7 << z.. In
order to obtain our result, we assume that

(H) =,p<<2

It is easy to obtain that the linearization of Eq. (5)

near E,(xos 20 20)

d]\éit)z —xoBNG — ) — Yxo 2, (D)
dl’ét(“= 2 () + 2 (D an
dl'ét(“z NG — 2,0

We consider system (5) in C([—z, ©©), R*) with
the initial values
N = ¢ (&), 218 = (&), 2,(8) =
0:(&y ,(0) =0,i=1,2,3,6€ [—7,0]
Taking Laplace transform of system (17), we get
sN= —z,8e " M(s) — xofe "N— 72,5+ ¢ (0)
G+ Dx=2%+ ¢ (18)
(s + 1 ¥= N+ ¢, (0)
where N, ¥, and ¥, are the Laplace transform of

N(t), a1 (1) and x, (1), respectively,and M(s) =
J " e N () dr. Solving (18) for N leads to N, =
K@, ©
J(s
K@yt = (s + D*[ao fe " M(s) + ¢, (0] +
7-1"o§03(o) — Yx,(s + 1)§02(0)
J(G) = (s + xofe”™) (s + D+ ya,
Following along the lines of [11] and using the

, where

Nyquist criterion, we obtain that the conditions for



%5

XU Chang-jin,et al:Frequency Domain Analysis for Bifurcation in a Logistic Model with Delay 59

local asymptotic stability of E, (xys xy, x0) are
given by

Im{J Gw,)} > 0 a9y

Re{JGwy)} = 0 20)
where Im{J (iwy )} and Re{J (iw,)} are the imagi-
nary part and real part of J (iw0 ), respectively and
w, is the small positive root of (20). It follows
from (19) and (20) that

wo— 0> (1 — w?)ax, Bsin wer —
2wy x0f8 cOS woT 2D
20— Yry= (1 — w?)zof cos wyt — 2w, 203 SN wyT

22
From (22), we obtain
2w — Yro< (1 + W) + 2w, 2o (23)
Then
(2 — 2P’ — 2z Pwe— B+ Vax, <0 (24)

which leads to wy<X @ , where

_ 21”0 ﬁ+ (2~T0 B)2+4(27I() B) (ﬂ+7>10

W+

202 — 2 P
By (21), we have
w? <1 *Wsin wot + 22, B cos wet
Hence
2022 *wsin wot + 42, cos wyt

W
(25)
In view of (22), we get
202= (1 — wf)xof cos wot — 2wy 200 sin wyt + Yo
(26)
Substituting (26) into (25) and rearranging, we

get
(—w?—3)x, B cos wT + [2(153)10 5210[?} .
0
sin wot < 2 — Yo 27)
It follows from (27) that
(—f — Do flcosan 7 — 1) +[W— 22 ﬁ} .
0
sin wor << 5 + @’ — Yx, (28

Using the bounds
1 =

(—w?— 3 )a, flcos wet —

2(w2+ 3) sin’ (“’TT]< % (o + 3’ +7*

and
{2(1 — i)z, B
w

0

ZIOBJ sinwor < (20? 30f + 4ot

we obtain
L, o+ L,c < L,

where
1 ., 2
L,= ?(w;Jr Dw? s L=

Qo + 2B+ 4xo s Ly= 5+ o’ — 72,
if = < ¢, =

It is easy to see that

—L,+./L.+ 4L, L,
2L,

, the stability of E, (xy, x>

x0) of system (5) is preserved. Thus we are now
in a position to state the following result.

Theorem 2 Suppose that (H) holds. If there
exists a parameter 0 <X ¢ < r. such that L,7* +
L,z < L,, then . is the maximum value (length
of delay) of r for which E,(x,, x0, x,) of system

(5) is asymptotically stable.

3 Numerical examples

In this section, we present some numerical re-
sults of system (5) to verify the analytical predic-
tions obtained in the previous section. Let us con-

sider the following system:

dJ\(fiit): N[l — 0.5N( — o) — 0.3z, ()]
dl(l:l([): —x. () + 2, () 29
t
dl‘2(t>= N — 2, ()
dr

which has a positive equilibrium E, (2o, 10, 20) =

(%,% ,%) and satisfies the conditions indicated in

Theorem 1. Take £ = 0 for example, by some com-
putation by means of Matlab 7. 0, we get 7,= 1. 95.
5 5 5

Thus, the positive equilibrium E, = (I,Z U ) is

stable when = < 7, which is illustrated by the comput-
er simulations ( see Figs. 1 ~ 7). When t passes
through the critical value 7,, the positive equilibrium

E,= (% ,% ,%) loses its stability and a Hopf bifur-
cation occurs, 1. e, » a family of periodic solutions bifur-

5 5 5

I?Z sz)’

cate from the positive equilibrium E, = (

which are depicted in Figs. 8~14,
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Fig. 3 Dynanicial behavior of system(4. 1)

Dynanicial behavior of system(4. 1)
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Fig.5 Dynanicial behavior of system(4. 1))

Figs. 1-7 Behavior and phase portrait of system
(29) withr= 1.9 << r,&1. 95. The positive equi-
o2 5
474
The initial value is (0. 3,0.4,0.2).

Figs. 8 ~14 Behavior and phase portrait of system
(29) withz = 2 > r,&~ 1. 95. Hopf bifurcation
5 5

4747

librium E, = ( , %) is asymptotically stable.

occurs from the positive equilibrium E, = (

% ). The initial value is (0. 3,0.4,0.2).
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Fig. 4 Dynanicial behavior of system(4. 1)
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Fig. 6 Dynanicial behavior of system(4. 1)

Fig. 7 Dynanicial behavior of system(4. 1)
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Fig. 8 Dynanicial behavior of system(4. 1)
2.5

w1 ()

0.5

0 100 200 300

t

400 500

Fig. 10 Dynanicial behavior of system(4. 1)

4 Conclusions and discussions

In this paper, we investigated a class of Lo-
gistic model with delay. By choosing the coeffi-
cient t as a bifurcating parameter and analyzing
the associating characteristic equation. It is found
that a Hopf bifurcation occurs when the bifurca-

ting parameter r passes through a critical value.
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Fig. 12 Dynanicial behavior of system(4. 1)
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Fig. 11 Dynanicial behavior of system(4. 1)

Meanwhile, the length of delay preserving the stabil-
ity of the positive equilibrium E, (xy, x0. x0) is
estimated. Considering computational complexity,
the direction and the stability of the bifurcating pe-
riodic orbits of system (3) have not been studied.

It is beyond the scope of the present paper and will

be further investigated elsewhere in the future.
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Fig. 13 Dynanicial behavior of system(4. 1)
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Fig. 14 Dynanicial behavior of system(4. 1)
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