2013 1 Jan. 2013
30 1 Journal of Chongqing Normal University Natural Science Vol.30 No. 1

Operations Research and Cybernetics DOI 10. 11721/ ¢qnuj20130103

The Application of Genetic Algorithm in Solving Nonsmooth
Optimization Problems

LONG Qiang
School of SITE University of Ballarat Ballarat Victoria 3350 Australia

Abstract This paper considers an application of genetic algorithm in solving nonsmooth optimization problems. Nonsmooth optimi-
zation devote itself to solve programming problems whose objective function are continuous nondifferentiable. Since the objective
function is nondifferentiable the classical deterministic methods based on gradient may confront numerical difficulties. Therefore it
would be a good choice to use genetic algorithm in which just information of objective function value but not information of gradient
is needed to solve nonsmooth optimization problems. Genetic algorithm is a stochastic method based on the evolutionary process of
nature. It firstly codes the original optimization problem by means of binary encoding Gary encoding or real number encoding. And
then the next population generation is generated by applying crossover operator mutation operator and selection operator. When the
iteration time approach a sufficiently large number the best chromosome in the current population will converge to the optimal solu-
tion or approximately optimal solution of the original problem. The genetic algorithm proposed in this paper uses real-number enco-
ding arithmetic crossover nonuniform mutation. And it selects the best population size of individuals in the selection step. Some
minimax problems which are nonsmooth optimization problems are tested and their results are compared with some deterministic
nonsmooth optimization methods.

Key words genetic algorithm minimax problem nonsmooth optimization problem

0224 A 1672-6693 2013 01-0012-05

1 Introduction

Genetic algorithm is one of the most important stochastic algorithms in mathematical programming. It was firstly in-
troduced by John Holland in the 1960s and then developed by his students and colleagues at theUniversity of Michigan
in the 1960s and 1970s ' . In the last two decades genetic algorithm was increasingly enriched by plenty of litera-
tures *° . And now various genetic algorithms are applied in different areas such as math programming combinational
optimization automatic control image processing and so on.

The main idea of genetic algorithm is based on biological natural selection and genetic mechanism and different
from traditional deterministic methods it is a stochastic algorithm. The earliest structure of genetic algorithm was provid-
ed by Goldberg in 7 . It firstly randomly generates a series of solutions which is called initial population and one sin-
gle individual from the population is called a chromosome. The number of chromosomes in a population is defined as
population size. In numerical computation Chromosomes experience as binary code Gray code or real-number code.
Those chromosomes generate their offspring in two different ways crossover and mutation. Crossover randomly exchanges
some genes which constitute chromosomes between two selected individuals. Mutation changes some randomly select-
ed genes of an individual in a certain way. Then the next population is constructed by selecting population size of best
chromosomes from the last population and its offspring. The criterion for selecting the next generation is the performance

of each chromosome according to fitness function which is normally the objection function value. Those chromosomes

x Recieved 04-27-2012 Accepted 07-18-2012 2013-01-18 15 05
Foundation The Science and Technology Project Affiliated to the Education Department of Chongqing Mumicipality No. KJ120616
First author biography LONG Qiang male Doctor Student research area is optimization theory and algorithm nonsmooth optimization and global op-
timization E-mail 27131375@ qq. com
2012-04-27 2012-07-18
No. KJ120616
E-mail 27131375@ qq. com
http //www. cnki. net/kems/detail /50. 1165. N. 20130118. 1505.201301. 12_026. html

1 LONG Qiang The Application of Genetic Algorithm in Solving Nonsmooth Optimization Problems 13

whose fitness is better are kept and whose fitness is worse are eliminated. In this way as the generation iteration goes
on the algorithm will converge to the best chromosome which probably is the optimal solution or suboptimal solution of
the original optimization problem. In practical computation we set beforehand a maximal generation time this maximal
generation time further plays a role of stopping criterion.

Suppose that P ¢ and O ¢ represent the parents and offspring of the " generation then the general structure of

genetic algorithm can be written in the following pseudo code.

From the pseudo code we can see that there are

. . . . 1 Initialization
three important operators in general genetic algorithm. 1.1 Generate the initial population P (0)
° Crossover operator This operator randomly 1.2 Set crossover rate, mutation rate and maximal generation time.

1.3 0

chooses a locus and exchanges the subse- 2 While the stopping criteria is not satisfied, do

quences before or after that locus between two 2.1 Crossover operator: generate O (1)

h ffsori F 2.2 Mutation operator: generate O ()

chromosomes to create two o spring. for exam- 23 Evaluate P (¢) and O (1) : compute the fitness function

ple suppose that strings 10000100 and 2.4 Selection operator: build the next population
2.5 1+l, goto2.1

11111111 are two parents chromosomes select- ond

ed to crossover and the third locus is selected end

then the crossover operator exchanges the last Fig.I General Structure of Genetic Algorithm

five genes of those two chromosomes and produces two offspring 10011111 and 1100100. The crossover opera-
tor roughly mimics biological recombination between two single chromosome organisms.

e Mutation operator This operator randomly flips some of the bits in a chromosome. For example the string
00000100 might be mutated in its second position to yield an offspring 01000100. Mutation can occur at each
bit position in a string with some probability usually very small e.g. 0.01

® Selection operator This operator selects chromosomes in the population for reproduction. The fitter the chro-
mosome the more time it is likely to be selected to reproduce.

Those three operators are very important in efficiency and robust of genetic algorithm. Better operators not only

make algorithms convergent faster but also reduce the amount of calculation.

2 Real-number encoding genetic algorithm

In this section we present the real-number encoding genetic algorithm we are going to use in this paper. Firstly
we suppose that the general structure of the problem we are about to solve is
[min [x]
s.t. xe Ib ub
Where / R"—R is a Lipschitz continuous function it" s not necessary differentiable. In the following we call this
problem nonsmooth optimization problem.
For the genetic algorithm we use real-number encoding which means the initial population is randomly chosen in
lb ub . Especially we generate chromosomes by the following formula
x=0+a ub-1Ib 2
Where « is a random number in 0 1
For the crossover operator we use arithmetic crossover * . For example suppose x, and x, are two chromosomes

randomly selected to crossover then we use the following style to form their offspring
xlr =px, + 1-B x,
n =P+ 1-B x

Where B is a randomly chosen number in 0 1

Nonuniform mutation is applied in mutation operator. For a given parent x if its component x, was chosen to mu-

X, x, x where x, was randomly changed by the following two ap-

n

tate then the offspring should be x'
proach or
x,=x, +d t x) —x, ify<0.5 A
x,=x,+d t x, —x ify>0.5
Where ye 0 1 is a randomly chosen number x; and x| are upper bound and lower bound of x, respectively. The

function d t y gives a value in 0 y which make d ¢ y converge to O as ¢ goes larger. For example

14 http //www. cqnuj. cn 30

)
dty =yr1 -7 5
Where r is a randomly number between O and 1 T is the maximal generation number and b is the parameter for nonuni-
form degree.
The selection operator selects the population size of best chromosomes to form the next generation. In our numerical
test examples we use function value as fitness.
Algorithm Real-number encoding genetic algorithm
Step0 Input parameters population size popu_size dimension number dim maximum generation max_gene
crossover rate cross_rate mutation rate mutate_rate.
Stepl Initialization use formula 1 to generate the initial population.
Step2 Crossover operator chose chromosomes according to the crossover rate then use formula 2 to generate
their offspring.
Step3 Mutation operator chose chromosomes according to the mutation rate and then randomly chose the compo-
nent which is about to mutate then use 3 to generate the offspring.
Step4 Evaluate the current parents and offspring and record the one with the smallest fitness.
StepS Check the stop criteria if it is satisfied then stop and output the chromosome with the smallest fitness as
an optimal solution of the problem otherwise go to step6.
Step6 Selection operator select the best population size of chromosomes to building the new generation and then
go to step2.

3 Test examples

In this section we test the real-encoding genetic algorithm provided in the previous section by some well known non-
smooth optimization problems. Since genetic algorithm is stochastic algorithm the results we illustrated in the following
tables are average results of 10 times execution of the genetic algorithm. In all the test problems we set crossover rate
and mutate rate 0.4 and 0.1 respectively. Test problems are calculated on an ACER ASPIRE4730Z laptop with 2. 16
GHz CPU and 2 GB RAM. And the algorithm code was written in Matlab 2010 environment. First of all we explain

some signs listed in the tables.

e Dim input parameter variable dimension of the problem
® Popu_size input parameter size of the population
® Max_gene input parameter the allowable maximum generation e.g. the maximal iteration time
e Objindi output average time for objective function evaluation
® Timespent output average time spending for one execution of algorithm
® Minf output average minimum value given by genetic algorithm
® Minf" the theoretic minimum value of the nonsmooth optimization problem.
Example 1 ° fx =max x, -10<x,<10i=12 n
I<i<n
Tab.1 Results for example 1
Input parameters Output results average Min*
Dim Popu_size Max_gene Objindi Timespent Minf inf
5 10 100 8.832 0E +02 3.620 OE -02 8.500 OE -03 0
10 20 200 4.060 8E +03 1.424 OE -01 1.744 8E - 04 0
20 40 500 2.012 1E +04 7.379 0E -01 9.601 7E - 06 0
40 80 800 6.424 1E +04 2.914 3E +00 1.222 4E -05 0
80 160 2 000 3.204 8E +05 1.755 3E +01 4.071 9E -05 0
100 200 2 000 4.006 OE +05 2.398 8E +01 7.919 7E - 06 0
150 300 3 000 9.009 OE +05 7.635 8E +01 5.630 3E -06 0
200 400 4 000 1.601 2E +06 1.860 2E +02 4.309 6E -06 0
250 500 5 000 2.501 5E +06 2.490 8E +02 3.154 2E - 06 0
300 600 6 000 2.501 5E +06 2.902 1E +02 7.496 1E -06 0
350 700 5 000 2.401 8E +06 3.728 4E +02 2.557 7E -05 0
400 800 5 000 3.502 1E +06 5.730 3E +02 1.607 3E - 05 0

Tab. 1 shows that the genetic algorithm performs very well on example 1. Even when dimension of the problem is

large like 400 we can still get a good results but this need to pay a price of larger population size and larger maxi-

1 LONG Qiang The Application of Genetic Algorithm in Solving Nonsmooth Optimization Problems 15

mal generation iteration which extends the computation time.
n-1

Example 2’ fx = Y max « +a3,, 2-w *+ 2-x, ° 2" -10<x,<10i=12 n

i=1

Tab.2 Results for example 2

Input parameters Output results average .
Dim Popu_size Max_gene Objindi Timespent Minf Minf
5 10 100 8.849 OE +02 2.964 5E -02 8.116 0 8
10 20 200 4.060 6E +03 1.274 3E - 01 18.283 4 18
20 40 500 2.012 OE +04 7.559 8E -01 38.281 1 38
40 80 800 6.424 1E +04 3.326 SE +00 78.864 8 78
80 250 1 000 2.507 S5E +05 1.868 2E +01 160. 881 3 158
100 200 2 000 4.006 OE +05 3.561 OE +01 200.047 1 198
150 300 3 000 9.009 OE +05 1.125 5E +02 302.448 8 298
200 400 4 000 1.601 2E +06 2.643 4E +02 406.011 3 398
250 500 5 000 2.501 SE +06 4.634 6E +02 503.242 1 498
300 600 6 000 2.401 8E +06 5.542 7E +02 613.2322 598
350 700 5 000 3.502 1E +06 9.602 7E +02 716.568 6 698
400 800 5 000 4.002 4E +06 1.250 6E +03 828.942 3 798
500 1 000 2 000 2.003 OE +06 7.839 6E +02 1260.819 2 998
600 1 000 2 000 2.003 OE +06 9.493 9E +02 1 643.5388 1198

From Tab. 2 we can see that as the dimension of the problem goes bigger the difference between the results get-
ting by genetic algorithm and theoretical optimal solution is becoming larger. And the results do effected by the maximal
generation iteration time. For example in Tab.2 when the dimension is 500 and 600 evidently 2 000 times iteration

is not enough to get good results.

i+1

n-1 n-1
9
Example 3 fx =max{z X+ x, -1 7 +x,, -1 Z -x - —12+xi+1+1}

i=1 i=1

~10<x,<10 i=12 =n

Tab.3 Resulis for example 3

Input parameters Output results average .

Dim Popu_size Max_gene Objindi Timespent Minf Minf
5 10 100 8.811 OE +02 2.567 5E -02 1.616 5E -01 0
10 20 200 4.060 7E +03 1.038 2E -01 1.204 5E -02 0
20 40 500 2.012 1E + 04 4.981 3E -01 6.612 9E -03 0
40 80 800 6.424 1E +04 1.994 7E +00 8.294 4E - 03 0
80 250 1 000 2.507 5E +05 8.504 7E +00 1.249 0E -02 0
100 200 2 000 4.006 OE +05 1.544 8E +01 1.052 8E -02 0
150 300 3 000 9.009 OE +05 4.707 OE +01 1.189 1E -02 0
200 400 4 000 1.601 2E +06 1.152 9E +02 1.249 9E -02 0
250 500 5 000 2.501 5E +06 1.682 2E +02 2.005 6E -02 0
300 600 6 000 2.401 8E +06 2.162 1E +02 3.628 0E - 02 0
350 700 5000 3.502 1E +06 3.765 7E +02 3.474 2E -02 0
400 800 5 000 4.002 4E +06 4.863 3E +02 4.274 OE - 02 0
500 1 000 2 000 2.003 OE +06 3.121 9E +02 2.562 7E -01 0
600 1 000 2 000 2.003 OE +06 3.756 2E +02 4.095 7E -01 0

Compare to example 1 whose theoretic minimizer is still O the results of example 3 is not ideal enough but it is
still acceptable and robust. Again from the last two rows of Tab. 3 we can see that maximal generation iteration time

still paly an important role for getting good results.

16

Journal of Chongging Normal University Natural Science

http //www. cqnuj. cn Vol.30 No. 1

4 Conclusions

This paper applies real-number encoding genetic algorithm to solve nonsmooth optimization problems. We firstly re-

viewed the basic idea of genetic algorithm and then designed a real-number encoding genetic algorithm and then ap-

plied this algorithm to solve some minimax problem. From the numerical test we can see that genetic algorithm is relia-

ble in solving nonsmooth optimization problems. One drawback of genetic algorithm is that when dimension of the prob-

lem becomes bigger the calculation time and time of objective function evaluation increase sharply. How to increase the

convergence rate of genetic algorithm but not extremely increase amount of calculation should be the future concerning of

this paper.

Reference

1

Holland J H. Adaptation in natural and artificial systems M .

2nd edition. Combridge MA University of Michigan Press

1992.

Goldberg D E. A note on Boltzmann tournament selection for

genetic algorithms and population-oriented simulated annealing
J . Complex Systems 1990 4 225-460.

Goldberg D E Korb B Deb K. Messy genetic algorithms moti-

vation analysis and first results J . Complex Systems 1989
3 493-530.

Grefenstette J J. Optimization of control parameters for genetic

algorithms J . IEEE Transactions on Systems Man and Cy-

bernetics 1986 16 1 122-128.

Kitano H. Neurogenetic learning An integrated method of de-

0-1

signing and training neural networks using genetic algorithms
J . Physica D Nonlinear Phenomena 1994 75 1 225-

238.

Coello C A Lamont G B Van Veldhuizen D A. Evolutionary

algorithms for solving multi-objective problems M .2nd edi-

tion. New York Springer-Verlag Inc 2007.

Goldberg D E. Genetic algorithms in search optimization and

machine learning M . Boston MA USA Addison-Wesley

Longman Publishing Co Inc 1989.

Michalewicz Z. Genetic algorithm data structure evalution pro-

grams M . 2nd edition. New York Springer-Verlag 1994.
Haarala H Miettinen K Makela M M. New limited memory

bundle method for large-scale nonsmooth optimization J

. Optimization Methods and Software 2004 19 6 673-692.

3350

