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Numerical Performance of Subgradient Methods
in Solving Nonsmooth Optimization Problems
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Abstract: The subgradient methods in solving nonsmooth optimization problems are studied in this paper. Firstly, we
present a brief review of the available subgradient methods. Then, different sorts of step size rules are introduced and the
corresponding convergence is established. Finally, some convex nonsmooth optimization problems are computed to test the
numerical performance of provided subgradient methods. Numerical comparisons between different subgradient methods
are investigated too.
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In this paper, we consider the following optimization problem(P)
min {(x)
s.t. xER"

where f:R"—>R is a Lipschitz continuous convex function. Note that f could be a nonsmooth function, and if it

P

is, we call Problem (P) a nonsmooth optimization problem. The aim of this paper is to investigate the numeri-
cal performance of subgradient methods in solving nonsmooth optimization problems.

The first series of numerical approaches introduced to solve nonsmooth optimization problems are subgra-
dient methods. They were mainly developed in the Soviet Union and an excellent overview can be found in Shor
[1]. More discussion can refer to [ 2-8]. The idea of subgradient methods is directly extended from smooth op-
timization. They consider one opposite subgradient vector at the current iteration point as the next search di-
rection, and apply step sizes which are supplied beforehand. This simple idea poses two ctritical questions: 1)
How to choose step size rules; 2) When to stop the numerical implementable.

For nonsmooth optimization, an important issue is that the opposite direction of a subgradient at a point
may not be a descent direction. So one cannot apply a line search method in the iteration as what we did in sol-
ving smooth optimization problems. The strategy of subgradient methods to handle this issue is to supply a

step size rule beforehand. For example, a series of step sizes are supplied as {a,} 7=, and the iteration style is

as follows
Tppr =X Tapd D
a, € {ar}i=1

where d,=—g, €9 f(x,) is an opposite direction of a subgradient at x,. It is no doubt that the convergence

rate of the algorithm closely depends on step sizes {a;}7-,. Fortunately, for some particular step size rules, we

can prove that iteration strategy (1) is convergence, although the convergence rate is quite slow.
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The rest of this paper is arranged as follows. In section 2, we will discuss some particular step size rules,
and their convergence properties will be analysed. In section 3, a general structure of subgradient methods will
be proposed. In section 4, some numerical examples will be tested by subgradient methods, andtheir numerical

results will be analysed. Section 5 concludes this paper.

1 Convergence of subgradient methods

To proceed it further, we suppose that
Assumption 1 At least one subgradient of f(x) at any point x can be calculated.
Assumption 2 The value of f(x) is computable at any point.

We suppose that the general iteration style of subgradient methods is

& .
, d 1
e, 5 € 2)

Tpt1 =T~ L

t>>0,suitable
The following theorem provides a sufficient condition for convergence of subgradient methods.
Theoren 1"} Suppose that x; is not optimal and x* be an optimal solution of (P), then
e —2" [ <lazp—a" | (3)

S —fa)

whenever 0<t, <2 T 1
k

(4)
where & €9 f(x,).

Proof By the iteration rule (2), we have

& _ -
& |l

%

=z —a" |

I Tp1 X | 2= X Ly

2__ > 5’: 2 __ L% 2__ 2
2<lk X sl H E}\, H >+Zﬂ H Xy X H Zb,gf;‘_’_tﬁ

where b, = <xk —x” ,H§7LH> . It is easy to check that (3) holds when 0<¢z,<2b,.
k

In light of the definition of subdifferential at x:df(x)={EER"| f(2)=(&z—x)+ f(2)}.
Replacing z,¢& and = by x,,& and 2" , respectively, we have f(z")— f(x,)={x" —x,,& ", which yields
fla)—f(x) flx)—f(x™)
&l & |l ’
Remark 1 Theorem 1 can be interpreted by the definition of subgradient. If £, €9 f(x;) and 2~ is an opti-

b= . This gives 0<<¢,<<2

mal point, then we have (—€T,2" —x,)=f(x,) — f(2" )=0, which means that the angle between —&, and

\ . e . . & . )
x" —a, is less than —-. Hence, if £,>>0 is small enough, x,+1 =2, — 1, m is closer to x* than a,.
k

2

Remark 2 Although theorem 1 gives a domain of ¢,, it is not applicable in numerical practice since we
don’t know the value of f(x" ). Here it is worth to mention that, as long as ¢, small enough, it can always sat-
isfy the condition (4). And furthermore, if we do know the value of f(x"), (which is true for some nons-
mooth optimization problems, such as nonsmooth equation), then a computable step size rule can be designed
according to condition (4).

Given the discussion of Theorem 1, we provide four different step size rules as follows.

The simplest step size rule could be t,=2A, with A>>0 small enough (5
The choice of constant A is a trick issue. A large A may disobey condition (4), which makes the iteration stop
at a fake optimal point; on the other hand, a small A may increase iteration time. To be on the safe side, we
tend to choose a small A in numerical practice.

Now let us consider the step size rule

tk>0,£imtk:0,2tk<oo (6)
e k=1

Examples of this rule are ¢, :/e% and t, =t,q", with £,”>0,q€ (0,1). One drawback of this step size rule is that

the iteration always stays in a circle with a constant radius, say A = Ei:()z‘k . This is because

| zo—x | <l zo—z, [l + 1y =2 | oot ooy =2 | =t +t,+2,+ oo+ <A
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To overcome this drawback, we adjust the step size rule by
te >0, 0t =w, D1 < o (7
k=1 k=1

For example, t,= with >0 and =0, respectively. In this way, some optimal 2", even far from

_a
b+k
the starting point x, will be reached.

Finally, we consider a special situation in which the optimal value of f, say /™ , is known. The step size

‘\ =A% with A € [0,2] (8)
k

This computable step size, which incorporates the knowledge of f, x;, and f~ , guarantees a monotonic decrease of the

rule in this situation is

distance from x; to = ({or all £) and actually the whole sequence {x;} does converge to somex”™ € X ™.

2 Algorithms of subgradient methods

All the different subgradient methods have the same operation process, except they use different step size
rules. Therefore, in this section, we first provide the general structure of subgradient methods and then apply
it to different step size rules.

Algorithm General Subgradient Method(GSM)

Step 1: Initialization. Set x, as a starting point and let ™ =x,,f" = f(x" ). Set m=10 000 as the largest
iteration time. Set k=1 and a tolerance parameter §=0. 000 1. Choose a step size rule from (5)~(8).

Step 2: Store f" and x". If /"> f(x,), then let {7 = f(x,) and 2™ =x,.

Step 3: Iteration. Compute the next step size ¢, using the selected step size rule in step 1 and calculate one

&
el

Step 4: Stop criteria. If || & || <8, then stop and output f* and =" ; else if #=>m, then stop and output

subgradient & € Jd f(x,). Then calculate the next point x,+; =x, —t,

/7 and x” ; otherwise, set k=k—+1 and go to step 2.

Remark 3 Except using the well-known necessary optimal condition 0€ Jd f(x,) as a stop criteria, we still
restrict the largest iteration time as a coercive stop criteria. This is because, for some special nonsmooth opti-
mization problems, the condition 0 € d f (x;) is impossible to satisfy. A convictive example could be f(x)=
‘I \ . No matter how close z; to the single optimal point 0, the norm of subgradient at x, is || & || =1.

Remark 4 The reason for introducing step 2 is because subgradient methods are not descent methods, so
the final point we obtained by subgradient methods may close to one optimal point ., but the function value
of the point may not the smallest one. Therefore, we chose the one with the smallest function value as the re-
sult of subgradient methods. For the special situation that f~ is already known, we cancel step 2.

Remark 5 To avoid iteration points staying in a circle with constant radius, we can reset step size ¢, at a

suitable time. For example, when || x,.; —x, | <<y (a small positive number) ., we set ¢, =t,.

3 Numerical tests

In this section, we consider some test problems to investigate the numerical performance of subgradient
methods. Note that it is the step size rules that make subgradient methods different, so we firstly test step size
rules proposed in (5)~(8) individually. Then, numerical comparisons among those step size rules are presen-
ted. All the test problems are cited from [3] and computed on an ACER 4730Z laptop with 2 GB RAM and
2.16 GHz CPU in Matlab 2010 environment.

First of all, we illustrate some signs which are used in the following: x, is starting point for numerical
tests; t, is step size for the £" iteration step; x” is approximation optimal point obtained by subgradient meth-
ods; f7 is approximation optimal value obtained by subgradient methods; f ™ is the already known best opti-
mal value.

Example 15 min  max f;(x)

1=i<3

i) =ai+a, [, () =Q—x))'+Q2—x)%, fi (x)=2exp(x, —x,) »2,=(0,0)
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Example 1 is solved by applying constant step size rule (5). The current known best optimal solution is
S =1.952 224 5. From Tab. 1, which illustrates numerical results, we can see that the smaller the step size

the better optimal value we can get. This result agrees with the analysis we did in section 2.

Example 2 min  max f,;(x)
1=i<<3
. 1 10x , . 1 10 1 10 )
S (1‘)23(1‘1 —0—17] Jrlol l—FZIﬁj s 2 (1‘)23(*11 —FI] J:i)l. 1+21§ ) [ (a) Zg(xl Trto1 +l£)l. 1-0-215) sy =1(3,1)

The computation of example 2 applies step size rule
. . . . o Tab.1 Numerical result for example 1
(6). The optimal solution of this example is f* = P

0. In Tab. 2,d.. stand for the farthest distance between the Le x f
1 (1.171 5, 0.284 3)3.629 938 378 226 757

0.5 (1.220 3, 0.939 7)2.268 832 647 147 855
0.1 (1.145 7, 0.902 8)1. 976 789 858 737 801
0.05 (1.139 7, 0.899 9)1. 954 604 289 964 668
0.01 (1.137 3, 0.893 8)1. 967 839 355 034 972
. 0.005 (1.140 5,0.897 8) 1. 953 339 146 087 326
Check the column of dyes we have due << D 4. 0.001 (1.139 4,0.899 7) 1. 953 463 252 515 693

i=1

initial point x, and the iteration points xx, 1. e, dpyx =
max{ | 20— | ‘k:l sertamy.

From Tab. 2, we can obviously see that the first two
step size are failed to find an optimal solution. This is be-

cause all the iteration point x, stay in a circle around x,.

Example 3 min  max {f,(x),f.(2)}
filo) = (xl — /2t a5 cos /b )2 =+0. 005(1% JFI%)
fz(f):(x2* x%—’—f% Sin xf—'—fé)z_'_o 005(1%"”1;)910:(194)

Step size rule (7) is used in solving example 3.

Tab.2 Numerical result for example 2

The optimal solution of this problem is f™ =0.

iy x” /‘* d max
Tab. 3 shows numerical results for solving exam- 1.739 0
I3 : .
ple 3, where iter time stands for the iteration time 2(1/2) (—O. 001 6) 5. 9976 1.610°3
when the approximation optimal solution f~ is a- 0.457 5
k [~
chieved. All the step size rule get an acceptable op- 2(2/3) (O. 001 5) 1.3318 27815
timal solution. The item of iter time shows that —0.000 0
. . . . . . 2(3/4)* 1. 557 0e—006 3.217 5
the optimal solution is not obtained in the last iter- —0.001 2
ation, which proves that subgradient methods are ‘ 0.000 0
(4/5)" 107* X 3.870 9e—008 3.180 9
not descent methods. —0.196 7
Example 4 min max f;(z)
1<5i<6

o=+t -1, (=242 (s — 2, f () =x, F+a, + 2,11
fil)=x,tx,—xs+1, fs (2) =22} +625+2 5oy —ax,+1)7, fs(x) =21 — 92,
xo=1(1,1,1)

) . Tab.3 Numerical results for example 3
Be solving example 4, we use the step size rule

ty x” - iter time

when /™ is already known. From reference paper 0. 106 5
[3], we know that for example 4, f™ =3.599 719 3, 1/k (1_ 165 2) 0.007 616 536 232 980 226
so the step size rule is written as ¢, =2 %, 1+ (z :‘;i ir) 0. 002 920 361 053 007 580
A€[0.2], & €f(ap). e

The first column of tab. 4 listed the choice of 2/2+h (O 531 3) 0.002 926 270 308 370 702
A. gap in the last column illustrates the difference 0.548 6
between the obtained approximation optimal value 4/ Utk (O 531 5) 0.00Z 927 465 964 806 903
/7 and the already known optimal value /™ , i. e. 0.548 3
gap=f*—f". 8/(8+k) (O - 6) 0.002 928 175 294 248 2239

Example 5"’ min max f:(2)

1siss4

file)=al+a; +22x—362+xr—4*—5x
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—1—5x—2—21xy+7x,

Tab. 4 Numerical results for example 4

f () =f () +10(al+a;+a;+ai + 2 P IE qap
x—x— 2+ xy—x2,—8) 0.345 8
£ = () F10(at F a2+ 2l 220 — 0.5 0.0050 |  3.600 138 583 736 212 4.192 8e— 004
o —x,—10) 0.134 4
. —r 2 2 2 _ 0.337 0
fo(o)=F () +10Q2x] + a5+ a5 +2x,
1 0.001 8 3.599 827 401 482 616 1.081 0e—004
=2, —5),20=00,0,0,0) ¢
_ 0.132 9
Example 5 compares all the step size rules 0. 333 4
presented in (5) ~(8). The already known best 1.5 0.000 9|  3.599 792 602 333 767 7.330 2e— 005
optimal value of this problem is /™ =—44. From 0.132 2
the gap listed in the last column of tab. 5, we can 0.328 3
see that step size rule (7) and (8) tend to experi- 2 0. 000 0 3.599 941 107 606 238 1.218 0Oe—004
ence better results than step size rule (5) and 0.1313
(6).
Tab.5 Numerical result of example 5
A x f gap
—0.006 8
1.002 0
0.1(5) —43.976 316 790 414 08 0.023 6
2.007 5
—0.981 5
—0.001 3
1.000 0
0.01(5) —43.999 735 615 518 411 2. 643 8e—004
2.000 9
—0.998 9
—0. 000 0
0.999 2
2/2+r) (T —43.999 996 735 850 772 3. 264 1e—006
2.000 3
—0.999 8§
—0.000 0
1.000 0
5/(5+k)(D) —43.999 995 720 274 626 4.279 7e—006
2.000 0
—0.999 9
0.064 3
0.738 9
202/3)"(6) —43.413 771 619 036 787 0.586 2
2.043 5
—0.880 0
—0.029 6
0.929 6
2(4/5)"(6) —43.947 001 474 082 462 0.053 0
2.041 2
—0.956 2
—0.000 0
) — f* 0.991 8
M(S) —43.999 668 922 006 904 3. 310 8e—004
&l 2.002 3
—0.998 8
—0.000 6
() — " 0.995 5
1.5 M(S) —43.999 823 930 916 833 1. 760 6e—004
& 2.001 7
—0.998 9

4 Conclusion

This paper investigated the numerical performance of different subgradient methods. We firstly introduced
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different styles of step size rules and analysed their convergence properties. And then numerical tests were
made to test numerical performance of different step size rules. The numerical results show that subgradient
methods are feasible for some unconstrained nonsmoothconvex optimization problems. However, how to

choose the step size rule is a difficult issue. From the numerical results, step size rule (7) should be the first

choise.
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