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Normal Families of Meromorphic Function Concerning Shared Values'
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Abstract: In this paper, we study the normality criterion concerning shared value. Let F be a family of meromorphic func tions
defined in a domain D. Let k,n=k-+2 be positive integers, and a be a non-zero complex number. For each pair (f,g) € F , if
FfH% and g (g")* share a IM, and w(r,l/(f” )*#)y=S(r,f), then Fis normal in D. The result improves and gen-
eralizes the theorems obtained by Zeng.
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1 Introduction and main results

In this paper, we use the standard notations and concepts of the Nevanlinna theory'"®. Let D be a domain
in C, and F be a family of meromorphic functions defined in a domain D. F is said to be normal in D, in the
sense of Montel, if for any sequence { f,} C F , there exists a subsequence {fu} such that /., converges spher-
ically locally uniformly in D, to a meromorphic function or oo.

Let g(2) be a meromorphic function, a be a finite complex number. If f(2) and g(z) assume the same ze-
ros, then we say that share ¢ IM (ignoring multiplicity) .

In 2004, M. Fang and L. Zalcman"* got the following results.

Theorem A Suppose that k is a positive integer and a7 0 is a finite complex number. Let F be a family of
meromorphic functions defined in a domain D. If for each pair of functions f,g€ F, f and g share 0, f* and
g% share a IM in D, and the zeros of f are of multiplicity =k-+2, then F is normal in D.

In 2012, Cuiping Zeng'” proved the following result.

Theorem B Let £ be a positive integer, a(7#0) and b be two finite values. Let F be a family of meromor-
phic functions defined in D, all of whose zeros have multiplicity at least £ and f*’ (2) =b when f(2)=0. If for

each pair of functions f and g in F, ff* and gg”

share a, then F is normal in D.

It is natural to ask whether Theorems B can be improved by the idea of weakened condition. In this paper,
we study the problem and obtain the following theorem.

Theorem 1 Let F be a family of meromorphic functions defined in a domain D. Let k,n=k+2 be positive

integers, and a be a non-zero complex number. For each pair (f,g)€ F , if £ (f")® and g (g")* share a IM,

and N(r, 1/Cf"*®)y=S(r,f), then Fis normal in D.

Example 1 Let D={z:|z|<{1} and F ={f,(2)=e™|m=1,2,} or F ={f, () =mz|lm=1,2,+}.
Obviously, for distinct positive integers m,l, we have f, (f2)* and g, (g/)* share 0 IM. However, the
families F are not normal at x=0.

Example 1 shows that the condition a7 0 in Theorem 1 is necessary.
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2 Some Lemmas

Lemma 1 (Zaleman’s Lemma)™®® Let F be a family of meromorphic functions in the unit disc A and a be
a real number satisfying —1<Za<1. Then if F is not normal at a point 2, €A, there exist, for each —1<<a<1: 1) a
real number r, <<1; 2) points 2, » |z,|<{r; 3) positive numbers O s p,,»O‘ ; 4) functions f,, f,€ F , such that
f.(z,+p,8)

n

g, (&)=

, spherically uniformly on compact subsets of C, where g(&) is a non-constant meromor-

phic function and g7 ()<< g~® (0) =1. Morcover, the order of g is not greater than 2.
Lemma 2 Let k,n=k+2 be positive integers and a70 be a finite complex number, and f be a non-con-

")® —g has at least two distinct zeros.

stant rational meromorphic function, then f (f
Proof Case 1 Suppose that f (f")* —a has exactly one zero z,.
Case 1.1 If f" is a non-constant polynomial. Set f (f")*® —a=A (2—z,)', where A is non-zero con-
stant, [ is a positive integer and [==n—k=>2. Then [ f (f")® ) =Al (z—=z,)"'. Hence f (") (z,) =0,
which contradicts with (") (z,) =a70 . Therefore f is rational but not a polynomial.

Case 1.2 If £ (f")® is rational but not a polynomial and has exactly one zero. We set

o (Z_Q/1 my "’(Z_C(_,)m-‘
f A (Ziﬁl)“l "'(27‘8[ n, (1)
where A is a non-zero constant and m, =1 =1,2,+,5), n; =1(G=1,2,,1).
Moreover, we denote
myFm, e dm, =M=s 0, e n, = N>t (2)
From(1), we have
(Zia] )mln”.(zia‘)m\n
"= A" s 3
f (Z_,Bl)”1”"'(2_31)“’“ (3)
_ min—k,,, _ mn—k .
and (f”)(“:(z a) (z—a,) g(2) )

(Z_Bl)uanrk“.(Z_Bl)nInJr/c
where g(2) is a polynomial, and deg g<<k(s+¢—1). Then
(Z_(Il )ml(n+l)7k"_ (z—a))”“(”ﬂ)*kg(z) B P

f(f")(lO: (z_,Bl)”1(”Al)+k'"(2_ﬁ/)n‘(“Jrl)Jrk 76 (5

—a )ml(zﬂrl)f/afl ee (Zia‘>/u\(n+l>f&f1gl (Z)

~ . . / ( S

[F (P = ad (z— B DT (g yn G DFke (6)
where g, (2) is a polynomial, and degg,<<(k+1)(s+t—1).
Since f (") —a has exactly one zero z,, from (5), we have
. B (z—2)! P
FO® :a+(2*ﬂl)”1m D ‘f---fozfﬁ,)”f"" Dk :5 (7
J— [—1

and [f(m®) = (z— )" £2(2) (8)

(z— B MDA (o — g yn i DAL
where B is a non-constant and

g:(x)=B[l—n+1N—kt]z'+B, 2 ' +--+B, (9
in which By ,B, ,**,B, | are constants.

Case 1.2.1 I [<<(n+1)N-+*kt. By (7), we easily obtained that deg(P)=deg(Q). Then, from (5), we
have

(nt+1)N-+kt=deg Q=deg P=Mn+1)—kstdeg g<nt+1DM—kst+r(Gti—D<(nt+1DM+tkt—rF
Hence, (n+1)M—N((n+1)=k>>0, therefore M>>N. On the other hand, a;7 2, (i=1,2,++,5) and deg g, =
¢ty from (2),(6) and (8), we have (n+1)M—(k+1)s<<deg g, =¢. That is, (r+DM<(k+Ds+r<<(k+1DM+
N, then 2M<CM(n—k)<IN, which contradicts with M>>N,

Case 1.2.2 I [=(n+1)N-+kt. From (9), we have deg g, <it. It follows from the proof of above that
2M<CN. On the other hand, from (6) and (8), we have N(n+1) +kt—1</—1<deg g, <<(k+1) (s+z—1).
By (2), we have (n+ D N<C(k+1)s+¢t— k< (k+1)M+ N—*k. This means that (k+1)M>nN, combining
with 2M<CN, we have 2n<k+2—1<n—1, which is impossible.
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Case 2 If f (/") —a has no zero.

Case 2.1 Since n=k+2 and f is a non-constant function. It is easily obtain that f is not a polynomial.

Case 2.2 f is rational but not a polynomial. Then we have /=0 for (7). Proceeding as the proof of case
1. 2.1, we have a contraction.

The proof of Lemma 2 is completed.

Lemma 3 Let k,n=k+2 be positive integers and a70 be a finite complex number, and f be a transcen-

dental meromorphic function with N(r,l/(f”)‘“ )=S(r,f), then f (") —a has infinitely many zeros.

Proof Let g=M"Y,o=fg—1 (10
We suppose, to the contrary, that f (/") —a has only finitely many zeros. since f is transcendental,
then
1 _
AN(Taf(f,,)wia)*S(raf) (1D
By p=fg—1, we get f=(p+1)/g, then N(r,%jgN(h%)-ﬁ—S(r,]"). Using (10), we have %:
o n oy (k)
gpil’%:goj—] . (ff) . Therefore, m(r, ,)<2m(r, j ( j<m(r, +1)+S(r’ .
Hence
T(r,f):T(r,%jJrO(l):r ( f)+N(r, fj+0(1)<m(r, +1)+N(r, +1j+s<r,f><
T( Jr1)JrS(r,f)fT(r,gDJrl)JrS(r,f)fT(r,f (fOPY+ESG, O 12
On the other hand, by the second fundamental theorem and (11), we have
— — 1 — 1
" ) <i ’ s L N (h) s L o~ (h b <
T(rsf (fO")NG f)ﬁLN(r 7 (f”)ijrN(r f(f”)(")—ajJrS(r )
— — 1
N(r,f)+N(r,f(f,,)<k))+5(r,f) (13)

Let f has a pole 2, of order p, by ¢+1=fg and n==k+2, we get 2, is a pole of ¢+1 of multiplicity p+
(np+/e)>1+(3+/€):/’+4, thus

(r,f)< NG, ot D+SGr . H< TG0t D+SG. =T f (fO)V+SCG,H (14

+ k+4 /e+4
Let f has a zero z; of order ¢, by ¢o+1=/fg and n==k+2, we get z, is a zero of ¢+ 1 of multiplicity g+ (ng—k) =1+

(k+2—k)=3. Since N(r,1/(f)*?)=S(r. /). Thus, we have

- 1 1 1 L 1 L
< , YWy <L , a0y ()
N(F’f(f”)””j<N(r’f)+N(r’(f”)“">) 3N(rf(f ) 3T(rf(f ) (15)
According to (13),(14) and (15), we have
2kR+5 1 .
<
3(k+4)T(r’f(fn)(k)j\S(r’f) (16)

By(12) and (16), we obtain T(r, f)<<S(r, f). This contradicts the fact that f is transcendental, and hence

£ (f")® —ahas infinitely many zeros.
3 Proof of theorems

Proof of Theorem 1 Without loss of generality, we may assume that D= {z €& C‘ | =] <<1}. Suppose, to
the contrary, that F is not normal in D. Without loss of generality, we assume that F is not normal at 2, =0.
Then, by Lemma 1, there exist a sequence {z;} of complex numbers with z;—>0(j—) , a sequence {f;} of F;
and a sequence {p;} of positive numbers with p;—>0, such that

g (O =p 71 (z;40,8) (17)
converges uniformly to a non-constantmeromorphic function g (&) in C with respect to the spherical metric.
Moreover, g(&) is of order at most 2. Hurwitz’s theorem implies that N(r,l/(g”)w )=S(r,g).

By (17), we have
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£ G0, (f1 (2 pEN® —a=g, (& (g"(ENP —a—>g (&) (g" (P —a (18)

with respect to the spherical metric.

If g (g

u)(k)

=a, then g has no zeros. Of course, g also has no poles. Since g is a non-constant meromor-

phic function of order at most 2, then there exist constants ¢; such that (¢, ,¢,)7#(0,0), and

g(&) =eorattafd (19)

n)(k) =

Obviously, this is contrary to the caseg (g a.

By Lemma 2 and Lemma 3, the function g (g

11)(/1) —

distinct zeros of g (g a.

Hence g (g")™ #a.

"Y® —g has at least two distinct zeros. Let & and & be two

We choose a positive number ¢ small enough such that D, 1D, =(J and such that g (g")* —a has no oth-

er zeros in D, UD, except for & and & , where

D, :{SGC‘ ‘5_50 ‘<8} »D, =

{¢ecClle—¢& | <o) (20)

By(18) and Hurwitz’s theorem, for sufficiently large j there exist points § &€ D,, & € D, such that
fj (Zj +pj5j ) (fy (Zj +‘0]sj ) )M) —a=0 ’_fj (Zj +pjéjy ) (f}’ (Z]’ ‘hoff ) )(k) —a=0

n)(lc)

By the assumption inTheorem 1, f (f and g (g

n )(k)

share a IM. For any integer m, it follows that

Sl T8N (1 (2 + 0600 —a=0, f,,(z;+ 0,6 ) ([ (2, +p;E NP —a=0
We fix m and note that z; +e;6;—>0,2,+te,& —0,if j—>0. we get f,,(0)(fh ()P —a=0.

Since the zeros of f,,(2) (f7, (2)® —a have no accumulation points for sufficiently large j, in fact we have z; +

0§ =0.2; 0§ =0.

2

Hence §=—-",&§ = *i’ This contradicts with the facts that & €D,, & €D,, D, D,=).

J I

Theorem 1 is proved completely.
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