DOI:10.11721/cqnuj20140219

甲巯咪唑互变异构和振动光谱的密度泛函理论研究

陶亚萍,韩礼刚,刘照军

(洛阳师范学院物理与电子信息学院,河南洛阳 471022)

摘要:甲巯咪唑(MMI)是一种广泛应用于临床治疗的抗甲状腺药物。它有硫醇式和硫酮式两种互变异构体,利用密度泛 函理论中的 B3LYP 混合泛函方法和 6-311+G(d, p)基函数组,计算了两种结构的吉布斯自由能。结果表明,硫酮式结构 的能量最低,是最稳定的结构。针对硫酮式结构,采用 GAR2PED 程序得到了 MMI 分子各振动频率的势能分布,并结合 实验测定的数据对各振动频率归属做出了全面地指认,弥补了以往文献未能充分考虑互变异构对振动频率归属影响的缺憾,提供了 MMI 分子振动光谱的新信息,有益于对与之相关衍生物光谱性质的进一步研究。

关键词:甲巯咪唑;互变异构;密度泛函理论;振动光谱;频率归属

中图分类号:O657.37

文献标志码:A

文章编号:1672-6693(2014)02-0084-05

咪唑及其衍生物可以作为强心剂、止痛剂和抗菌剂等,具有广泛的生物活性,因而该类化合物的研究一直备 受关注^[1-2]。甲巯咪唑(2-mercapto-1-methylimidazole,C4H6N2S,MMI),又名他巴唑,是一种甲状腺抑制剂,作 为一种重要的抗甲状腺药物已被广泛地应用于甲状腺肿瘤临床治疗。咪唑的衍生物,会形成互变异构体,这一 点 Kurzepa 等人^[3]进行过研究;甲巯咪唑包含了特殊的 N-S-H 结构,会形成硫酮式和硫醇式两种结构的异构体, 对此 Zhu 等人^[4]已经进行了分析和计算。Balachandran^[5]曾对 MMI 的振动光谱进行过研究,但他未考虑 MMI 存在互变异构体的问题,直接按硫醇式结构为最稳定结构进行的振动归属,导致他的归属还值得商榷。Biswas 等人^[6]虽然理论计算了 MMI 拉曼和红外光谱的振动频率,也考虑了 MMI 存在互变异构体,但其对于 MMI 的 振动光谱的归属不是在确定了最稳定结构的基础上进行的归属,也不是在势能分布的基础上进行的指认,还处 于经验指认的阶段;而 MMI 谱带的合频、泛频数目较多,大部分谱带强度又较弱,经验归属可信度较差。

密度泛函理论(Density functional theory,DFT)是近年来用于研究光谱的较好方法之—^[7-8],而 GAR2PED^[9]程序 是由 Martin 和 Alsenoy于 1995年开发专门用于对各振动频率进行简正振动分析的工具。本研究首先用 DFT 理论计算了 MMI 分子的硫酮式和硫醇式两种互变异构构型的吉布斯自由能,确定了最稳定构型;然后选取最稳 定构型的 MMI 分子作为研究对象,计算了它的振动频率,并与实验频率进行了对比;采用 GAR2PED 程序得到 了 MMI 分子各振动频率的势能分布,从而对 MMI 分子的振动频率归属做出了全面指认。本研究工作对于与 MMI 相关的药学、生物学等方面的深入研究具有重要意义。

1 **实验**

甲巯咪唑(分析纯)为商品化试剂,含量大于 98%,未经进一步纯化。红外和拉曼光谱的测量由 Nicolet Nexus 系列联用型 FTIR/Raman 光谱仪完成。拉曼和红外光谱的分辨率均好于 2 cm⁻¹。红外光谱样品采用 KBr 压片制作,光谱采集的范围为 4 000~400 cm⁻¹。拉曼光谱使用波长为 1 064 nm 的 Nd:YAG 激光器,在功 率为 450 mW 的条件下测定,光谱采集的范围为 4 000~100 cm⁻¹。

2 计算方法

根据 Zhu 和 Biswas 等人的分析^[4,6], MMI 分子包含了特殊的 N-S-H 结构, 巯基是机体内非常重要的活性基

收稿日期:2013-03-13 修回日期:2013-06-09 网络出版时间:2014-03-10 19:23
 资助项目:国家自然科学基金(No. 10905028);洛阳市科技发展计划项目(No. 1101041A)
 作者简介:陶亚萍,女,研究方向为分子光谱,E-mail:taoyaping2001@gmail.com; 通讯作者:刘照军,E-mail:zhaojunliu@gmail.com
 网络出版地址:http://www.cnki.net/kcms/detail/50.1165.N.20140310.1923.019.html

团,与S相连的H原子会转移到五元环的N原子上,也就是MMI分子会从硫醇式(N-S-H)转变为硫酮式(H-N-S)结构,为了确定哪一个是MMI分子的最稳定结构,笔者对两种结构分别采用Gaussian03程序包¹⁰⁰,利用密度 泛函理论B3LYP算法和 6-311+G(d, p)基组,来确认分子的平衡构型,如图1所示。发现两种构型虽然计算后

都可以得到无虚频的优化构型,但第二 种构型比第一种构型的能量低 9.56 kcal/mol,因此笔者认为硫酮式构型是 最稳定构型。事实上 Garner^[11]早在 1994年就通过 NMR 实验指出 MMI 在 治疗病人自身免疫性疾病时起作用的 是硫酮式结构;Biswas^[6]也曾通过拉曼 光谱实验证实 MMI 分子在固态和液态 形式下以硫酮式结构存在。因此前人 按照硫醇式结构对 MMI 分子进行光谱 分析,显然是与事实不符的。鉴于此, 笔者针对硫酮式结构的 MMI 分子进行

为了对 MMI 分子的简正振动频率 做出正确的归属,笔者选择了硫酮式结 构的 MMI 分子的一系列内坐标,基于 这些内坐标并根据分子的对称性和 Pulay 等人提出的方法^[12-13],构造出一套 独立、完备的局域对称坐标,如表 1 所 示。由 GAR2PED 软件读取 Gaussian 输出文件,通过定义对称坐标的方式, 将每个简正振动模式分解为这些对称 坐标的贡献,给出各振动频率的势能分 布。

3 结果和结论

3.1 MMI 分子的平衡构型

表 2 列出了 MMI 分子最稳定构型 的键长、键角和部分两面角参数,同时 也列出了以往文献中的 X 射线晶体散 射的实验数据^[14]。计算结果显示, MMI 分子不是平面结构,但分子中除 了 CH₃基团中的 H₇和 H₉外,其它分子 都位于一个平面内。分子中的五元环 结构略显不规则,N₁-C₅、N₃-C₄键长较 长,N₁-C₂、C₂-N₃、N₃-C₄键长略短;键角 N₁C₂N₃、C₂N₁C₅、N₃C₄C₅、N₁C₅C₄略小 于 C₂N₃C₄,这是由于存在 N 原子和外 接基团不同而造成的畸变。同时可以 看到,大多数计算值都比实验值大一 些,这是因为笔者计算的是单个分子在

图 1 MMI 分子的平衡构型

表 1 MMI 分子的内坐标和对称坐标($p = \cos 144^\circ$, $q = \cos 72^\circ$)

才称坐标	组成	说明	
S_1	$R_1(1,2)$	N ₁ C ₂ 伸缩	
S_2	$R_2(1,5)$	N ₁ C ₅ 伸缩	
S_3	$R_{3}(1,6)$	N ₁ C ₆ 伸缩	
S_4	$R_4(2,3)$	C ₂ N ₃ 伸缩	
S_5	$R_{5}(2,10)$	C ₂ S ₁₀ 伸缩	
S_6	$R_{6}(3,4)$	N ₃ C ₄ 伸缩	
S_7	$R_7(3,11)$	N ₃ H ₁₁ 伸缩	
S_8	$R_{8}(4,5)$	C ₄ C ₅ 伸缩	
S_9	$R_{9}(4,12)$	C4H12伸缩	
S_{10}	$R_{10}(5,13)$	C5 H13 伸缩	
S_{11}	$R_{11}(6,7) + R_{12}(6,8) + R_{13}(6,9)$	CH ₃ 对称伸缩	
S_{12}	$2R_{11}(6,7) - R_{12}(6,8) - R_{13}(6,9)$	CH₃反对称伸缩 A	
S_{13}	R_{12} (6,8) $-R_{13}$ (6,9)	CH₃反对称伸缩 B	
~	$a_{14}(5,1,2) + p(a_{15}(4,5,1) + a_{18}(1,2,3)) +$		
S_{14}	$q(a_{16}(2,3,4)+a_{17}(3,4,5))$		
	$(p-a)(a_{12}(4,5,1)-a_{12}(1,2,3))+$		
S_{15}	$(p - q)(a_{15}(1,0,1) - a_{18}(1,2,0)) +$ $(1-b)(a_{15}(2,2,4) + a_{18}(2,4,5))$	环反对称变形	
	$\beta_{11} \left(7.6.8\right) + \beta_{12} \left(7.6.9\right) + \beta_{22} \left(8.6.9\right) - \beta_{22} \left(8.$		
S_{16}	$p_{13}(1,0,0) + p_{19}(1,0,0) + p_{20}(0,0,0,0)$	CH₃对称变形	
S17	$p_{21}(7,6,8) - \beta_{12}(7,6,9) - \beta_{23}(3,6,9)$	CH。反对称变形 A	
S_{10}	$\beta_{10}(7,6,9) = \beta_{20}(8,6,9)$	CH。反对称变形B	
S_{10}	$2\beta_{21}(7,6,1) - \beta_{22}(8,6,1) - \beta_{22}(9,6,1)$	CH。摇摆 A	
S_{20}	$\beta_{22}(8,6,1) - \beta_{22}(9,6,1)$	CH。摇摆 B	
S_{21}	$\beta_{22}(0,0,1) = \beta_{23}(0,0,1)$ $\beta_{25}(1,2,10) = \beta_{25}(3,2,10)$	S ₁₀ C ₂ 面内弯曲	
S_{22}	$\beta_{27}(2,3,11) - \beta_{28}(4,3,11)$	H ₁₁ N ₂ 面内弯曲	
S_{23}	$\beta_{29}(3,4,12) - \beta_{30}(5,4,12)$	H12C4 面内弯曲	
S_{24}	$\beta_{31}(1,5,13) - \beta_{32}(4,5,13)$	H ₁₃ C ₅ 面内弯曲	
S_{25}	$\beta_{33}(2,1,6) - \beta_{34}(5,1,6)$	C ₆ N ₁ 面内弯曲	
- 20	$a(D_{22}(5,1,2,3) + D_{22}(4,5,1,2)) +$	0 1	
S_{26}	$q(D_{35}(0,1,2,0) + D_{39}(1,0,1,2)) + (D_{12}(1,2,2,4) + D_{12}(2,4,5,1)) + D_{12}(2,2,4,5)$	环折叠变形	
	$p(D_{36}(1,2,3,4)+D_{38}(3,4,3,1))+D_{37}(2,3,4,3)$		
S	$(p-q)(D_{35}(5,1,2,3)-D_{39}(4,5,1,2))+$	环卷曲变形	
O_{27}	$(1-p)(D_{36}(1,2,3,4)-D_{38}(3,4,5,1))$	中仓田文形	
S_{28}	$\tau_{40}(2,1,6,7)$	N1C6扭转	
S_{29}	$\omega_{41}(10,2,1,3)$	S10C2面外振动	
S_{30}	$\omega_{42}(11,3,2,4)$	H ₁₁ N ₃ 面外振动	
S_{31}	$\omega_{43}(12,4,3,5)$	H12C4面外振动	
S_{32}^{-}	$\omega_{44}(13,5,1,4)$	H ₁₃ C ₅ 面外振动	
$S_{\scriptscriptstyle 33}$	$\omega_{45}(6,1,2,5)$	C ₆ N ₁ 面外振动	

注: R_i 代表键长, α_i , β_i 代表键角, D_i , τ_i , ω_i 代表两面角。

气态下的结果,而实验数据则来自于固态下的晶体结构。计算的 MMI 分子的所有键长与实验数据的平均偏差为 0.018 Å,最大偏差仅有 0.036 Å;计算的 MMI 分子的所有键角与实验数据的平均偏差为 0.95°,最大偏差也 仅有 1.40°。以上分析表明,笔者得到的优化后的几何构型参数是可靠的。

3.2 振动频率和归属

图 2 和图 3 分别是 MMI 分子的 红外和拉曼光谱的理论与实验对比图, 表 3 列出了 MMI 分子的红外、拉曼频 率及简正振动频率的归属。由于密度 泛函方法计算振动频率较之观测值会 偏大,为了使计算值与实验值更吻合, Andersson 和 Uvdal 在充分考虑非谐 性、电子结构等影响的基础上,通过 125 个 分子 的 计 算 和 总结 得 出 了 B3LYP/6-311+G(d, p)算法的校正 因子为 0.967 9^[15]。于是笔者把 MMI 分子的理论数据与该校正因子相乘,经 过校正后,理论计算的振动频率与实验

表 2 MMI 分子的键长、键角和两面角参数

参数		B3LYP/6-	实验	参数		B3LYP/6-	实验数
		311+G(d, p)	数据 ^[14]			311+G(d, p)	据 ^[14]
键长 /Å	$N_1 C_2$	1.375	1.360		$N_{3}C_{2}S_{10}$	127.8	127.5
	N_1C_5	1.391	1.378		$C_2N_3C_4$	111.5	111.2
	$N_1 C_6$	1.454	1.460		$N_{3} C_{4} C_{5}$	106.5	105.5
	C_2N_3	1.373	1.337		$N_1C_5C_4$	107.6	108.2
	$C_2 S_{10}$	1.676	1.686	键角	$C_{\!2}N_{\!3}H_{\!11}$	121.5	
	$N_3 C_4$	1.386	1.393	/(°)	$C_{\!4}N_{\!3}H_{\!11}$	127.1	
	C_4C_5	1.353	1.344		$N_3C_4C_{12}$	122.8	
	C_4H_{12}	1.076			$C_5C_4C_{12}$	130.7	
	C_5H_{13}	1.076			$N_1C_5H_{13}$	122.0	
	N_3H_{11}	1.007			$C_4C_5H_{13}$	130.4	
键角 /(°)	$C_2N_1C_5$	110.4	109.6		$C_{5}N_{1}C_{2}N_{3}$	-0.0002	
	$C_2N_1C_6$	123.4	124.6		$C_{2}N_{1}C_{5}C_{4}$	0.000 1	
	$C_5N_1C_6$	126.2	125.7	角	$C_5N_1C_2S_{\!10}$	179.999 9	
	$N_1C_2N_3$	104.1	105.5	/(°)	$N_1C_2N_3H_{11}$	-179.9996	
	$N_1C_2S_{\!10}$	128.2	127.0				

结果符合较好。其中存在的少许差别可能来自于实际测量样品分子之间存在有相互作用,而理论模拟的是单分 子理想化模型。同时表3显示了由简正振动分析软件得到的各种振动模式对简正振动频率的贡献百分比,在归 属时,笔者把这种情况归属为能量占较大比例的那些振动。根据笔者的计算和实验结果,MMI分子的振动频率 可以分为几个部分:

1)位于 3 551 cm⁻¹ 处的峰归 属于与分子中 N-H 键伸缩有关的 振动,它的振动相对独立,与其它 键伸缩或弯曲振动之间无耦合,这 与以往文献报道的 N-H 键伸缩振 动位于 3 500~3 000 cm⁻¹基本符 合;位于 1 439 cm⁻¹处的峰归属于 与 N-H 键的面内弯曲有关的振动, 同时掺杂少量的 C₃ N₄ 伸缩振动和 CH₃ 基团的反对称变形有关的振 动;位于 498 cm⁻¹处的峰归属于与 N-H 键的面外弯曲有关的振动,并 伴有环对称变形振动的成分。

2)位于 3 186、3 166 cm⁻¹处的 峰归属于与分子中 C-H 键伸缩有 关的振动;位于 1 259、1 064 cm⁻¹ 处的峰归属于与 C-H 键的面内弯 曲有关的振动;位于 795、676 cm⁻¹

处的峰归属于与 C-H 键的面外弯曲有关的振动。

3)位于 3 038、3 012、2 950 cm⁻¹ 处的峰归属于与 CH₃ 基团中的 C-H 键伸缩有关的振动;位于 1 471、 1 424 cm⁻¹ 处的峰归属于与 CH₃ 基团的反对称变形有关的振动;位于 1 425 cm⁻¹ 处的峰归属于与 CH₃ 基团的对称变形有关的振动;位于 1 110、988 cm⁻¹ 处的峰归属于与 CH₃ 基团摇摆有关的振动。

4)位于1383、1287、1186、1137、1070 cm⁻¹处的峰主要归属于与分子中 C-N 键伸缩有关的振动;位于404 cm⁻¹处的峰主要归属于 C-N 的面内弯曲振动;位于205 cm⁻¹处的峰主要归属于 C-N 的面外弯曲振动;位于64

cm⁻¹处的峰主要归属于 C-N 扭转振动。

5)位于 526 cm⁻¹处的峰主要归属于与分子中 C-S 键伸缩有关的振动;位于 234 cm⁻¹处的峰主要归属于 C-S 的面内弯曲振动;位于 641 cm⁻¹处的峰主要归属于 C-S 的面外弯曲振动;位于 1 555 cm⁻¹处的峰均主要归属于 C-C 伸缩振动。

6)位于 896、675、594、181 cm⁻¹处的峰均主要归属于与分子中的五元环有关的振动,其中 896 cm⁻¹归属于 环反对称变形振动,675 cm⁻¹归属于环对称变形振动,594 cm⁻¹归属于环折叠变形振动,181 cm⁻¹归属于环卷曲 变形振动。

序	实验值	计算	值	山屋(执张八士)/\	序	实	验值	计	算值	山屋(热 能 八 左 1/)
号	红外 拉曼	校正前	校正后	归周(勞能分布%)	号	红外	、拉曼	校正前	校正	归周(努能分布%)
1		3 669	3 551	S ₇ (99)	18			1 106	1 070	$S_6(48), S_{24}(22), S_{22}(12)$
2	3 161 3 160	3 292	3 186	$S_9(64), S_{10}(35)$	19	$1 \ 015$	1 016	1 099	1 064	$S_{23}(23), S_{20}(22), S_{24}(14)$
3	3 126 3 127	3 271	3 166	$S_{10}(64), S_{9}(35)$	20	914	914	1021	988	$S_{20}(22), S_{2}(19), S_{14}(18), S_{23}(17)$
4	3 106 3 109	3 139	3 038	$S_{12}(100)$	21	851	844	926	896	$S_{15}(70), S_1(17)$
5	$3 \ 015 \ 3 \ 012$	3 112	3 012	$S_{13}(100)$	22	769	764	821	795	$S_{ m 32}(47)$, $S_{ m 31}(40)$
c	C 0.040.0.040	3 048	2 050	\mathcal{C} (100)	23			698	676	$S_{31}(27), S_{27}(19), S_{32}(19),$
0	2 942 2 942		2 950	$S_{11}(100)$						$S_{26}(16), S_{29}(16)$
7	$1 \ 573 \ 1 \ 573$	1 607	1 555	$S_8(62), S_{24}(10)$	24	691	692	697	675	$S_{14}(32), S_3(15)$
8		1 520	$1 \ 471$	$S_{18}(42), S_{17}(14), S_{20}(10)$	25			662	641	$S_{29}(30), S_{27}(26), S_{31}(16), S_{32}(12)$
9	$1 \ 464 \ 1 \ 464$	1 487	1 439	$S_{22}(27), S_{16}(16), S_6(11)$	26	601	602	614	594	$S_{26}(50), S_{27}(31), S_{32}(11)$
10	$1 \ 403 \ 1 \ 406$	$1 \ 472$	$1 \ 425$	$S_{16}(34), S_4(12), S_{18}(11)$	27	530	530	543	526	$S_5(49), S_{14}(22), S_{25}(12)$
11		$1 \ 471$	$1 \ 424$	$S_{17}(66), S_{18}(22)$	28			515	498	$S_{ m 30}(67)$, $S_{ m 26}(25)$
12	1 337 1 338	1 429	1 383	$S_3(15), S_{16}(12), \ S_{23}(10), S_6(10)$	29	409	410	417	404	$S_{25}(45)$, $S_{21}(31)$
13	$1\ 275\ 1\ 277$	1 330	1 287	$S_1(30), S_2(14), S_{22}(10)$	30		264	242	234	$S_{21}(57), S_{25}(34)$
14	1 947 1 950	1 201	1.950	C (22) C (22) C (10)	21		010	010	205	$S_{33}(32), S_{27}(23),$
14	1 247 1 230	1 301	1 209	$S_{24}(35), S_3(26), S_{23}(19)$	51		213	212	205	$S_{26}(17), S_{29}(14), S_{30}(13)$
15		$1 \ 225$	1 186	$S_4(42), S_{22}(16), S_{24}(12)$	32		124	187	181	$S_{27}(18), S_{33}(18), S_{26}(15), S_{30}(12)$
16	$1 \ 151 \ 1 \ 151$	1 175	1 137	$S_2(20), S_6(12), S_{15}(10)$	33		100	66	64	$S_{28}(60), S_{33}(17), S_{19}(11)$
17	$1 \ 090 \ 1 \ 093$	1 147	1 110	$S_{19}(65), S_{20}(22)$						

表 3 MMI 分子的实验和理论频率及振动归属

4 结论

采用密度泛函理论对 MMI 分子的硫醇式和硫酮式两种互变异构体进行了比较分析,确定了硫酮式为最稳定的结构,同时实验测量了 MMI 分子的拉曼和红外光谱,在该分子光谱中出现了信号较强的 1 464 cm⁻¹峰,这是代表硫酮式结构中 N-H 键面内弯曲振动的峰,却在 2 550 cm⁻¹附近未发现代表硫醇式结构的 S-H 键伸缩振动的峰,从而再次确证了硫酮式为最稳定的结构。针对硫酮式结构的 MMI 分子,计算了它的简正振动频率,运用简正振动分析方法得到了各振动频率的势能分布,从而对它的简正振动模式进行了详尽的指认,这也是首次在考虑互变异构的基础上进行的全面归属,对深入研究与之相关的衍生物的光谱性质,具有重要的参考价值。MMI 是甲状腺机能亢进者的首选药物,对该物质分子结构的分析和振动频率的全面归属有利于深入分析 MMI 的药理作用,以期达到最佳治疗效果;同时作为药品检验的参考数据,在临床检验上也有重要意义。

参考文献:

- [1] Chabernaud M L, Fatimi J, Lagorce J F, et al. Lymphoproliferative activity of methimazole: free sh group dependency
 [J]. Gen Pharmac, 1995, 26(6): 1363-1367.
- [2] Urquiza N M, Naso L G, Silvia G, et al. Manca antioxidant activity of methimazole-copper (II) bioactive species and spectroscopic investigations on the mechanism of its interaction with Bovine Serum Albumin[J]. Polyhedron, 2012, 31(1):530-538.
- [3] Kurzepa M, Dobrowolski J C, Mazurek A P. Theoretical

studies on tautomerism and IR spectra of C-5 substituted imidazoles[J]. Journal of Molecular Structure, 2001, 565/ 566(1/2/3):107-113.

- [4] Zhu H J, Ren Y, Ren J, et al. DFT explorations of tautomerism of 2-mercaptoimidazole in aqueous solution[J]. Journal of Molecular Structure: THEOCHEM, 2005, 730(1/2/ 3):199-205.
- [5] Balachandran V, Lakshmi A, Janaki A. Ab initio, DFT, HOMO-LUMO and natural bond orbital analyses of the elec-

tronic structure of 2-mercapto-1-methylimidazole[J]. Journal of Molecular Structure, 2011, 1006 (1/2/3): 395-401.

- [6] Biswas N, Thomas S, Sarkar A, et al. Adsorption of methimazole on silver nanoparticles: FTIR, raman, and surface-enhanced raman scattering study aided by density functional theory[J]. J Phys Chem C,2009,113(17):7091-7100.
- [7] Zou Q, Jiang L, Du X, et al. Optimization of phenanthrene structure and vibrational spectra studies based on density functional theory[J]. Chin J Lumin, 2012, 33(12):1389-1397.
- [8] 谷明信,何国田,李明,等.1-乙基-3-甲基咪唑四氟硼酸盐光谱 分析与计算[J].重庆师范大学学报:自然科学版,2011,28(6): 56-60.

Gu M X, He G T, Li M, et al. Spectral analysis and calculations of 1-ethyl-3-methyl imidazole tetrafluoroborate [J]. Journal of Chongqing Normal University: Natural Science, 2011,28(6):56-60.

- [9] Martin J M L, Alsenoy C V. Gar2ped[CP/OL]. Belgium: University of Antwerp, 1995.
- [10] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03 [DB/ CD]. Revision C. 02. Pittsburgh: Gaussian Inc, 2003.
- [11] Garner M, Armstrong D R, Reglinski J, et al. The struc-

ture of methimazole and its consequences for current therapeutic models of Graves' disease[J]. Bioorganic Medicinal Chemistry Letters, 1994, 4(11):1357-1360.

- [12] Pulay P, Fogarasi G, Pongo G, et al. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene[J]. J Am Chem Soc, 1983, 105(24):7037.
- [13] Fogarasi G,Xhov X,Taylor P W, et al. The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces[J]. J Am Chem Soc,1992,114(21):8191.
- [14] Raper B S, Creighon J R. l-methyl-4-imidazoline-2-thione: structure, comparison with related molecules and a discussion of coordination characteristics [J]. Acta Cryst, 1983, B39(3):355-360.
- [15] Andersson M P, Uvdal P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-úbasis set 6-311+G(d,p) [J]. J Phys Chem A,2005,109(12):2937-2941.

DFT Theoretical Investigation on the Tautomerism and Vibrational Spectra of 2-mercapto-1-methylimidazole

TAO Ya-ping, HAN Li-gang, LIU Zhao-jun

(College of Physics and Electronic Information, Luoyang Normal University, Luoyang Henan 471022, China) Abstract: 2-mercapto-1-methylimidazole (MMI) is a kind of important anti-thyroid drug widely used in clinical treatment. MMI exists in thiol and thione tautomeric forms. In order to make sure which one is the stable structure, the calculation of Gibbs free energy was performed by the B3LYP method with the 6-311+G (d, p) basis set. The results showed that the thione form was the right one we want to find. As a follow-up work, molecular potential energy of each frequency distribution was obtained using the program GAR2PED, and the overall recognition of the vibration frequency assignment was made considering the experimental data. Previous literature didn't consider the impact of tautomerism, so such kind of work can provide more information about the molecular vibrational spectra of MMI and is useful for the further study on spectral properties of the related derivative.

Key words: 2-mercapto-1-methylimidazole; tautomerism; density functional theory; vibrational spectra; frequencies assignments

(责任编辑 方 兴)