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# Z . In this article we introduce the exponential geometric distribution (EG for brevity) as a model. which is obtained by
mixing the exponential distribution with one truncated geometric distribution. It has the density of f(ax;f3,p)=8(1—p) X
e M (2—pe P)(1—pe ™) % By straightforward integration we find that the various moments of the EG is E(a2";8, p) =
p 'A—pr! B [p "L(p,r)—1]. Firstly, we discuss that the maximum likelihood estimates of 8 and p can not be get
in explicit solution form; it should be solved by numerical algorithm. Then we nest one EM algorithm within the outer EM
algorithm to solve the problem. Note that, for the outer EM algorithm the missing data are based on the mixture represen-
tation while at the inner EM algorithm, the missing data are the truncated observations. In the end we get the maximum
likelihood estimators of parameters.

X $#17 : EM algorithm; exponential distribution; one truncated geometric distribution; Newton-Raphson algorithm; maxi-
mum likelihood estimation
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1 Introduction

The Exponential Poisson(EP) distribution as a model for lifetime data was introduced in the recent paper
Kust and Konstantinos Adamidis™'. Similar models with other mixing distribution have been described in Ad-
amidis and Loukas™ , and Tahmasbi and Rezaei""’ where a geometric and a logarithmic series mixing distribu-
tions were used, respectively.

In this article we introduce the exponential geometric distribution(EG for brevity) as a model. The distri-
bution is obtained by mixing the exponential distribution with one truncated geometric distribution. An EM al-
gorithm for estimating the parameters of the EG model has been proposed. This algorithm uses a Newton-
Raphson approach at the M-step. In more details, the Newton-Raphson step is replaced by another EM algo-
rithm at alternative approach. This approach has simple explicit solution form by making use of a nested EM
algorithm (see, e. g. Van Dyk'™) where the M-step itself is solved with an EM algorithm. An advantage of
this algorithm is that it provides estimates in the admissible range when the initial values are in the admissible
range, and avoids overflow problems that may occur during Newton-Raphson iterations. Additionally, it can
be faster in some cases. Some simulation evidence on the speed of the new approach compared to the one that

uses Newton-Raphson is provided.
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2 The distribution

Let y, sy, »y,be a random sample from the distribution with density of f(y;B)=pge™®, where 8,y>>0.

Let Z is one truncated geometric variable with probability function
P(z;p):%(l—p)p:" ,2=2,3,,and pE (0,1)

Define X=min(y,,y;,**,y,), then the conditional distribution of X follows an exponential distribution
with parameterfz under the condition of Z=z, which has the conditional density function
f(x|z,B=PBze *,2,>0
Then, the unconditional distribution of X will be an exponential geometric distribution (EG) with the
probability density function
f(xsBsp)=p(l—ple ™ (2—pe #)(1—pe ™) *,2,7>0,p€ (0,1) (D
The latterone defines the distribution that we shall be referring to in the sequel as the EG. In the literature
it is customary for such names to be given to distributions arising via the operation of mixing. It is obviously
that by assuming that X follows an exponential distribution with parameter 8z where Z is a truncated geometric
variable with parameter p, the distribution of X is the EG with the density given by (1).
It can be seen that the EG density function is monotone decreasing with model values B(2—p) (1—p) 'at

x=0. For all values of parameters, the density is strictly decreasing inxrand tending to zero as x—>oo.

3 Properties and moments of distribution

By straightforward integration we find that the distribution function is given by

Flx;B.p)=P{X<zx)=p '[(I—pe ") '—1+p] (2)
The raw moments of X may be determined from (1) by direct integration. For r=1,2,++-, we find that
EG B.p)=p ' A—p)r! B [p 'L(p,r)—1] (3)

where L(p,r) = ijlp’j " is known as the poly-logarithm function(see [6]). The function is quickly e-

valuated and readily available in standard software, such as Mathematic. Furthermore, the mean and variance

of the EG distribution are easily given by (3).

4 The nested EM algorithm for EG model

4.1 The EM algorithm

Proceeding with the method of likelihood, the log-likelihood function from a sample of n observations, yu, = (x; »

Ty st 2,) s 1s given by L(Bspsym) = nln[f(1—p)]— 2321‘, — 22 In(1 — pe i) 4 Z In(2 — pe i)
i=1 i=1 i=1

and subsequently the associated gradients are found to be

%:nﬁ 1 —221;-22 [xpe ™ (1 — pe )]+ 2 [rpe i (2— pe @)
57[):*” A—p) " +225 [ (A= pe )
i=1

The maximum likelihood estimates (MLE) of 8 and p must be derived numerically and we propose to use
the EM algorithm'™ here. It is a statistically oriented iterative scheme with desirable properties that are fairly
well known. To implement the algorithm, we define the hypothetical complete-data distribution with density
function [z, p)=B(1—p)zp?e ™ ,for x,7>0,2=2,3,+,p€(0,1)

Thus, it is straightforward to verify that the E-step of an EM cycle require the computation of the condi-
tional expectation of (Z|X;87,p). Using p(z|x;3p.p)=zp~ e # D (1—pe #)? (2pe f —ple ) !

We can found that E(Z| X8, p)=2 (1—pe ) ' —pe @ (2—pe #) !
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The cycle is completed with the M-step which is essentially-full data maximum likelihood over (8, p). As a
result, an EM iteration, taking (8 ,p) into (8“7 ,p“"") is defined by (see [3] and [8])

B = (211’51’)71 P =1 _# (2&)*1 (4)
,}0)

where s, =E(Z, |2, ,7 s p") =2 (1—pWe # )t —pe#n (2—p0e#n) L,

The explicit solution can not be get in this equation. Then one needs to use a numerical algorithm, such as

NR(see[9]). In general, it is easy to be solved. An alternative algorithm is proposed in the next section.
4. 2 The nested EM algorithm

Van Dyk"™! showed that nested EM algorithm are useful as they simplify the steps of the algorithm to
smaller and easier to handle steps, as well as improving the computational efficiency in certain problems. Van
DykM! described how nesting two(or more) EM algorithms can take advantage of conditional expectations in ex-
plicit solution form and lead to algorithms which tend to be faster to converge, reducing computational time,
are straightforward to implement and program in standard statistical software, and enjoy stable conver-gence
(e. g. monotone convergence in likelihood) . It is interesting appropriate handling of them. Please refer to
Popescu and Wong™® for other applications of nested EM algorithm.

Truncated data constitute a typical example of data that can be considered as missing data (see,e. g.
Mclachlan and Krishnan'l). The EM algorithm is a standard algorithm to derive MLE for this data with "
missing data" representation. For the EM algorithm described above, an important task during the M-step is to
derive MLE from a sample of truncated Geometric random variables. This is exactly what the solution of (4)
does. Alternatively this equation can be easily solved via an EM algorithm (see e. g. Bohning and Schén™?).

Consider the casethat MLE for a sample of truncated at one geometric distribution observations is given.
The idea is that apart from the observed data, there are some more observations that are one and hence they are

missing, since one observation cannot be observed. For the geometric parameter, the sufficient statistic is
ZZ; . The one value doesn’t contribute to this sum but it inflates the denominator of the MLE of the parame-

ter which is the sample mean. Hence, a simple EM algorithm could be used to estimate the expected number of
one observation, denoted asn,. Thus, utilizing the observed data Z,,Z,,+*,Z, the EM algorithm for a simple
geometric distribution, truncated at one is described as:

Use current estimates for

E-step:Obtain n{™ = (n+n,) (1—p)

In fact this is the number of one observation we would expect if the parameter of the geometric distribution
is p(i. e. (1— p)estimates the probability of one observation), while n-+n, is the total sample size (i. e. the ob-

served sample size and the one observations as assumed by the current estimates).
n

M-step: Update geometric parameter P =1—(n+np™ (251) l

i=1

The algorithm at the E-step estimates how many one observation would expect to observe based on the
current estimate, while at the M-step it updates the parameter by considering all the observations, observed or
not.

Van DykM™ discussed the use of nested EM algorithms where the M-step of an EM algorithm can be anoth-
er EM algorithm in itself. This is in fact an alternative approach to the use of any numerical maximization algo-
rithm in the M-step. like the NR used in the previous section. Therefore, the idea in the current situation is
that while trying to solve the M-step instead of using a NR method, we may nest one EM algorithm within the
outer EM algorithm to solve the problem. Note that, for the outer EM algorithm the missing data are based on
the mixture representation while at the inner EM algorithm, the missing data are the truncated observations.

From the above discussion a nested EM algorithm is proposed for the EG distribution where the M-step of the al-



Vol. 31 No. 4 Journal of Chongqing Normal University (Natural Science) http://www. cqnuj. cn 109

gorithm is solved by applying another EM algorithm. Consequently, the nested EM algorithm takes the form:
:E(Z, T?ﬂ“)vp(“>:
- n;E2-step:nf™=n+n,) (1—p),

(1) (/)

E-step: With the given values of parameters f8 calculate El-step: s;

(1) (1)

2(1_ (z) B ‘z»’.) _ p(z) ﬁ (2_ (z) B ,rl) 1,1.21,2,'

M-step: Update theparameters by Ml-step: f*" =n (E:,’:lsixif s M2-step: p"" =1 — (n + ny) X

(2 11—1 )

Note that steps E2 and M2 are the steps based on the second EM algorithm, the inner one. The two steps
replace the need for a NR algorithm during the M-step.

An interesting point arises here. There are two strategies on how the EM algorithms will be used. The
first one needs to run several steps of the inner EM Algorithm (steps E2 and M2) so as to ensure that the con-
vergence of the estimates for the truncated geometric part. On the contrary, the second strategy. making use
of the monotonic property of the algorithm, needs just one iteration of the inner EM at each outer EM(steps E1

and M1) iteration. In both cases the convergence of the algorithm can be based on the results of Van Kyk™!.
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