Vol. 31 No. 5

DOI:10.11721/cqnuj20140513

Normal Families of Meromorphic Functions and Shared Holomorphic Functions*

WU Chun

(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)

Abstract: In this paper, we discuss the normality criterion concerning shared holomorphic functions, and prove that if \mathscr{F} be a family of meromorphic functions in a domain D, $L[f]=a_0f'+a_1f$ $(a_0\neq 0)$, and a,b,c,d be four holomorphic functions in D. For each $f\in\mathscr{F}$, if $a(z)\neq d(z)$, $b(z)+a_1(z)a(z)+a_0(z)a'(z)\neq 2c(z)$, $c(z)-a_0(z)a'(z)-a_1(z)a(z)\neq 0$, $f(z)=a(z)\Leftrightarrow L[f](z)=b(z)$ and $L[f](z)=c(z)\Rightarrow f(z)=d(z)$, then \mathscr{F} is normal in D.

Key words: meromorphic functions; normal families; shared function

中图分类号:O174.5

文献标志码:A

文章编号:1672-6693(2014)05-0076-05

1 Introduction and main results

Let D be a domain in \mathbb{C} , and \mathscr{F} be a family of meromorphic functions defined in a domain D. \mathscr{F} is said to be normal in D, in the sense of Montel, if for any sequence $\{f_n\} \subset \mathscr{F}$, there exists a subsequence $\{f_{n_j}\}$ such that f_{n_j} converges spherically locally uniformly in D, to a meromorphic function or $\infty^{[1-3]}$.

Let g(z) be a meromorphic function, a be a finite complex number. If f(z) and g(z) assume the same zeros, then we say that share a IM (ignoring multiplicity) [1,4-5].

In 2005, Chang, Fang and Zalcman^[6] got the following results.

Theorem A Let \mathscr{F} be a family of meromorphic functions defined in a domain D, and let a,b,c and d be complex numbers such that $b\neq 0$, $c\neq a$ and $d\neq b$. If for each $f\in \mathscr{F}$, $f=a\Leftrightarrow f'=b$ and $f=c\Rightarrow f'=d$, then \mathscr{F} is normal in D.

In 2012, $L\ddot{u}^{[7]}$ replaced the condition $f=a \Leftrightarrow f'=b$ and $f=c \Rightarrow f'=d$ by $f(z)=a(z) \Leftrightarrow L[f](z)=b(z)$ and $f(z)=c(z)\Rightarrow L[f](z)=d(z)$ and proved the following result.

Theorem B Let \mathscr{F} be a family of meromorphic functions in a domain D, let $L[f] = a_0 f' + a_1 f(a_0 \neq 0)$, and let a,b,c,d be four holomorphic functions in D. For each $f \in \mathscr{F}$, if 1) $a(z) \neq c(z)$; 2) $b(z) - a_1(z)a(z) - a_0(z)c'(z) \neq 0$; 3) $b(z) - a_1(z)c(z) - a_0(z)c'(z) \neq 0$; 4) $f(z) = a(z) \Leftrightarrow L[f](z) = b(z)$ and $f(z) = c(z) \Rightarrow L[f](z) = d(z)$, then \mathscr{F} is normal in D.

A natural question is: whether \mathcal{F} is normal if we replace the condition $f(z) = c(z) \Rightarrow L[f](z) = d(z)$ in Theorem B by $L[f](z) = c(z) \Rightarrow f(z) = d(z)$.

In this paper, we answer this question by the following result.

收稿日期:2013-09-11 **修回日期:**2013-10-12 **网络出版时间:**2014-9-17 22:37

资助项目:重庆市教委科技项目(No. KJ130632);重庆师范大学博士启动基金(No. 13XLB024)

作者简介:吴春,男,副教授,博士,研究方向为值分布理论,E-mail:wuchun@cqnu.edu.cn

网络出版地址:http://www.cnki.net/kcms/detail/50.1165. N. 20140917.2237.012.html

^{*} Received:11-09-2013 Accepted:12-10-2013 网络出版时间:2014-9-17 22:37

Foundation: Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ130632); the Found of Chongqing Normal University (No. 13XLB024)

The first author biography: WU Chun, male, associate professor, doctor, engaged in the study of value distribution theory, E-mail: wuchun@cqnu. edu. cn

Theorem 1 Let \mathscr{F} be a family of meromorphic functions in a domain D, let $L[f]=a_0f'+a_1f(a_0\neq 0)$, and let a,b,c,d be four holomorphic functions in D. For each $f\in\mathscr{F}$, if 1) $a(z)\neq d(z)$; 2) $b(z)+a_1(z)a(z)+a_0(z)a'(z)\neq 2c(z)$; 3) $c(z)-a_0(z)a'(z)-a_1(z)a(z)\neq 0$; 4) $f(z)=a(z)\Leftrightarrow L[f](z)=b(z)$ and $L[f](z)=c(z)\Rightarrow f(z)=d(z)$, then \mathscr{F} is normal in D.

If $a_0=1$ and $a_1=0$ in L[f](z), we find that the condition 2) can reduce to $b(z)+a'(z)\neq 2c(z)$.

Thus, the following corollary is an immediately consequence of Theorem 1.

Corollary 1 Let \mathscr{F} be a family of meromorphic functions in a domain D, let a,b,c,d be four holomorphic functions in D. For each $f \in \mathscr{F}$, if 1) $a(z) \neq d(z)$; 2) $b(z) + a'(z) \neq 2c(z)$; 3) $c(z) - a'(z) \neq 0$; 4) $f(z) = a(z) \Leftrightarrow f' = b(z)$ and $f' = c(z) \Rightarrow f(z) = d(z)$, then \mathscr{F} is normal in D.

2 Some Lemmas

Lemma 1 (Zalcman's Lemma)^[8] Let \mathscr{F} be a family of meromorphic functions in the unit disc Δ , all of whose zeros have multiplicity at least k, and suppose that there exists $A \geqslant 1$ such that $|f^{(k)}(z)| \leqslant A$ whenever f(z) = 0. If \mathscr{F} is not normal at z_0 in the unit disc, then there exist, for each $0 \leqslant a \leqslant k$.

1) a real number r, r < 1; 2) points z_n , $|z_n| < r$; 3) positive numbers ρ_n , $\rho_n \to 0^+$; 4) functions f_n , $f_n \in \mathcal{F}$, such that $g_n(\xi) = \frac{f_n(z_n + \rho_n \xi)}{\rho_n^a} \to g(\xi)$ locally uniformly, where g is a non-constant meromorphic function in C, all of whose zeros have multiplicity at least k, such that $g^{\#}(\xi) \le g^{\#}(0) = kA + 1$. In particular, g has order at most two.

Lemma $2^{[g]}$ Let g be a meromorphic function with finite order on C. If g has only finitely many critical values, then it has only finitely many asymptotic values.

Lemma $3^{[10]}$ Let g(z) be a transcendental meromorphic function such that $g(0) \neq \infty$ and the set of finite on \mathbb{C} such that the set of finite critical and asymptotic values of g(z) is bounded. Then, there exists R > 0, such that $|g'(z)| \geqslant \frac{|g(z)|}{2\pi |z|} \log \frac{|g(z)|}{R}$.

Lemma $4^{[4]}$ Suppose that f(z) is meromorphic and transcendental in the plane. Then as $r \to \infty$, $T(r, f) \le \left(2 + \frac{1}{l}\right) N\left(r, \frac{1}{f}\right) + \left(2 + \frac{2}{l}\right) \overline{N}\left(r, \frac{1}{f^{(l)} - 1}\right) + S(r, f)$.

Lemma $5^{[11]}$ Let $f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 + \frac{q(z)}{p(z)}$, where a_0 , a_1 , \dots , a_n are constants with $a_n \neq 0$, q(z) and p(z) are two coprime polynomials with deg $q(z) < \deg p(z)$, k be a positive integer. If $f^{(k)} \neq 1$, then we have: i) n = k, and k! $a_k = 1$; ii) $f(z) = \frac{1}{k!} z^k + \dots + a_0 + \frac{1}{(az+b)^m}$; iii) If the zeros of f are of order $\geqslant k+1$, then $f(z) = \frac{(cz+d)^{k+1}}{az+b}$, where $f(z) = \frac{(cz+d)^{k+1}}{az+b}$, wh

Lemma $6^{[12]}$ Let f be a rational function such that $f' \neq 0$ on C. Then, either f = az + b or $f = \frac{a}{(z + z_0)^n} + b$, where $a(\neq 0)$, b and z_0 are constants, and n is a positive integer.

Lemma 7 Let \mathscr{F} be a family of meromorphic functions in a domain D, a and b be distinct complex numbers and $a\neq 2b$. If for $f\in\mathscr{F}$, $f(z)=0\Leftrightarrow f'(z)=a$ and $f'(z)\neq b$, then \mathscr{F} is normal in D.

Proof Suppose that \mathscr{F} is not normal in D, then there exists $z_0 \in D$, such that \mathscr{F} is not normal at z_0 . By Lemma 1, for $A = \max\{|a|, |b|\}$, there exist a sequence of function $f_n \in \mathscr{F}$, a sequence of complex numbers $z_n \to z_0$ and a sequence of positive numbers $\rho_n \to 0$, such that $g_n(\xi) = \rho_n^{-1} f_n(z_n + \rho_n \xi) \to g(\xi)$, spherically locally uniformly in \mathbb{C} , where $g(\xi)$ is a non-constant meromorphic function. Moreover, $g(\xi)$ is of order at most 2, and $g^{\#}(\xi) \leq g^{\#}(0) = A + 1$ for all $\xi \in \mathbb{C}$.

We claim: i) $g(\xi) = 0 \Leftrightarrow g'(\xi) = a$, ii) $g'(\xi) \neq b$.

Suppose that $g(\xi_0)=0$. Then by Hurwitz's theorem, there exist ξ_n , $\xi_n \to \xi_0$, such that $g_n(\xi) = \rho_n^{-1} f_n(z_n + \rho_n \xi_n) = 0$ (for n sufficiently large). Thus $f'_n(z_n + \rho_n \xi_n) = a$, in the limit as $n \to \infty$ we obtain $g'(\xi_0) = a$, This is

 $g(\xi) = 0 \Rightarrow g'(\xi) = a$.

Suppose now that $g'(\xi) = a$, We claim that $g'(\xi) \not\equiv a$, Indeed, If $g'(\xi) \equiv a$, we have $g(\xi) = a\xi + C$, where C is a constant. By a simple calculation, we obtain $g^{\sharp}(0) \leqslant |a| \leqslant A \leqslant A + 1$, which contradict that $g^{\sharp}(0) = A + 1$.

Since $g'(\xi) = a$ but $g'(\xi) \not\equiv a$ and $f'_n(z_n + \rho_n \xi) - a \Rightarrow g'(\xi) - a$ on some neighborhood of the point ξ_0 , $\xi_n \rightarrow \xi_0$, such that $f'_n(z_n + \rho_n \xi) = a$. Thus, $f_n(z_n + \rho_n \xi_n) = 0$. It is easy to deduce that $g(\xi_0) = 0$. Thus, we prove i).

Next we prove ii). Suppose $g'(\xi_0) = b$, We claim that $g'(\xi) \not\equiv b$. Indeed, If $g'(\xi) \equiv b$, we have $g(\xi) = b\xi + C$, where C is a constant. By a simple calculation, we obtain $g^{\sharp}(0) \leqslant |b| \leqslant A \leqslant A+1$, which contradict that $g^{\sharp}(0) = A+1$.

Thus, by Hurwitz's theorem, there exists a sequence $\xi_n \to \xi_0$, such that $f'_n(z_n + \rho_n \xi_n) = b$. Since $f'_n(z) \neq b$, we have $f'_n(z_n + \rho_n \xi_n) \neq b$, which is a contradiction. Thus, ii) is proved.

Suppose that g is not a rational function, by Lemma 4 and $g'(\xi) \neq b$, we know g must have infinitely many zeros $\{\xi_n\}$, and $\xi_n \to \infty (n \to \infty)$. Let $h(\xi) = g(\xi) - b\xi$, then $h'(\xi) = g'(\xi) - b \neq 0$. It is easy to see that $h(\xi)$ is a meromorphic function with finite order. Thus, from Lemma 2 and Lemma 3, there exists R > 0 such that $\frac{|\xi_n h'(\xi_n)|}{|h(\xi_n)|} \geqslant \frac{1}{2\pi} \log \frac{|h(\xi_n)|}{R} = \frac{1}{2\pi} \log \frac{|b\xi_n|}{R} \to \infty, n \to \infty$, which contradicts with $\frac{|\xi_n h'(\xi_n)|}{|h(\xi_n)|} = \left|\frac{a-b}{b}\right|$.

Thus, $g(\xi)$ is a rational function.

Next, we consider the following two cases.

Case 1 If b=0, from $g'\neq b$ and Lemma 6, we have $g=\alpha\xi+\beta$ or $g=\frac{\alpha}{(\xi+\xi_0)^n}+\beta$, where α,β,ξ_0 are constants, and n is a positive integer. Suppose $g=\alpha\xi+\beta$, then g=0 has a single zero $\xi=\frac{-\beta}{\alpha}$, meanwhile $g'=\alpha$ has infinitely many zeros. It contradicts with $g(\xi)=0\Leftrightarrow g'(\xi)=a$. Thus, $g=\frac{\alpha}{(\xi+\xi_0)^n}+\beta$. If a=0, which contradicts with that a and b are distinct constants. If $a\neq 0$, then the number of zeros of g=0 is at most n, meanwhile the number of zeros of $g'=\frac{-n\alpha}{(\xi+\xi_0)^{n+1}}=a$ is n+1, which contradicts with $g(\xi)=0\Leftrightarrow g'(\xi)=a$.

Case2 If $b\neq 0$, we distinguish three cases.

Case2.1 If g is a polynomial. From $g' \neq b$, we have $g = \alpha \xi + \beta$, where $\alpha \neq 0$, $\beta \neq b$ are constants, in the same manner as above, we get a contradiction.

Case2.2 If $g = \frac{q(\xi)}{p(\xi)}$, where $q(\xi)$ and $p(\xi)$ are coprime polynomials, and $\deg q(\xi) < \deg p(\xi)$. By a simple calculation, we obtain that 0 is the only one deficiency value of $g' = \frac{q'p - p'q}{p^2}$, which contradicts with $g' \neq b$, $b \neq 0$.

Case2. 3 If $g(z) = a_n \xi^n + a_{n-1} \xi^{n-1} + \dots + \xi_0 + \frac{q(\xi)}{p(\xi)}$, where a_0, a_1, \dots, a_n are constants with $a_n \neq 0, q$ and p are two coprime polynomials with deg $q < \deg p$, and n is a positive integer. Because g is a rational function, by Lemma 5, we have

$$g(z) = b\xi + a_0 + \frac{A}{(c\xi + d)^m}, g'(\xi) = b - \frac{Acm}{(c\xi + d)^{m+1}},$$
(1)

where a_0 , $c(\neq 0)$, d, $A\neq 0$ are constants, m is a positive integer. Suppose a=0, then from i), we obtain that the multiplicity of zeros of g is at least 2. Thus, the roots number of g=0 is at most $\frac{m+1}{2}$, and the roots are different from each other, meanwhile g'=0 has m+1 distinct roots, which contradicts with i). Thus $a\neq 0$, from i), we know that the roots of g=0 and g'=a are all simple. Therefore, $\frac{g}{g'-a}$ is a entire function and has unique zero $-\frac{d}{c}$ which is the pole of g. So

$$\frac{g}{g'-a} \equiv k \left(cz+d\right)^{l},\tag{2}$$

where k is a nonconstant and l is a positive integer.

From (1) and (2), we get

$$\frac{b}{c}(c\xi+d)^{m+2} + \left(a_0 - \frac{bd}{c}\right)(c\xi+d)^{m+1} + A(c\xi+d) \equiv (b-a)k (c\xi+d)^{m+l+1} - Acmk (c\xi+d)^l. \tag{3}$$

According to (3), we obtain $l=1, a_0 - \frac{bd}{c} = 0$, and $(m+1)b = a(m=1, 2, \cdots)$. Especially, if m=1, we have a=2b, which contradicts the assumption.

Therefore, \mathcal{F} is normal in D. Lemma 7 is proved completely.

3 Proof of Theorems

3.1. Proof of Theorem 1

Since normality is a local property, we assume that $D=\Delta$, the unit disc. Set $\mathscr{F}_1=\{F:F=f-a,f\in\mathscr{F}\}$, In view of the form of L[f] and the assumption, we can easily deduce $F(z)=0\Leftrightarrow F'(z)=\varphi(z)$, where $\varphi(z)=\frac{b-a_1a-a_0a'}{a_0}$.

Suppose that \mathscr{F} is not normal at $z_0 \in \Delta$. Let $M = \max_{z \in D_1} \{ | \varphi(z) | \}$, and $A = \max\{M, 1\}$, where r > 0 is a constant and $D_1 = \{z: |z - z_0| \le r\} \subset \Delta$. Then, in domain $D_2 = \{z: |z - z_0| \le \frac{r}{2}\}$, we have $|F'(z)| = |\varphi(z)| \le \frac{r}{2}$

A when f(z) = 0. Since \mathcal{F} is not normal at $z_0 \in \Delta$, we have \mathcal{F}_1 is not normal at $z_0 \in \Delta$ as well. Then by Lemma 1, there exist a sequence of function $f_n \in \mathcal{F}$, a sequence of complex numbers $z_n \to z_0$ and a sequence of positive numbers $\rho_n \to 0$, such that $g_n(\xi) = \rho_n^{-1} [f_n(z_n + \rho_n \xi) - a(z_n + \rho_n \xi)] \to g(\xi)$ converges uniformly to a non-constant meromorphic function $g(\xi)$ in \mathbb{C} with respect to the spherical metric. Moreover, $g(\xi)$ is of order at most 2, and $g^{\#}(\xi) \leq g^{\#}(0) = A + 1$ for all $\xi \in \mathbb{C}$.

In the following, we claim that i) $g(\xi) = 0 \Leftrightarrow g'(\xi) = \varphi(z_0)$, where $\varphi(z_0) = \frac{b(z_0) - a_0(z_0)a'(z_0) - a_1(z_0)a(z_0)}{a_0(z_0)}$; ii)

 $g'(\xi) \neq \lambda$, where $\lambda = \frac{c(z_0) - a_0(z_0)a'(z_0) - a_1(z_0)a(z_0)}{a_0(z_0)} \neq 0$ is a constant.

Next, we prove the claim as follows.

We assume that $g(\xi_0) = 0$. Then by Hurwitz's theorem, there exist ξ_n , $\xi_n \rightarrow \xi_0$, such that

$$g_n(\xi_n) = \rho_n^{-1} [f_n(z_n + \rho_n \xi_n) - a(z_n + \rho_n \xi_n)] = 0.$$
(4)

Thus $L[f_n](z_n+\rho_n\xi_n)=b(z_n+\rho_n\xi_n)$.

Since

$$\frac{L[f_n](z_n + \rho_n \xi_n)}{a_0(z_n + \rho_n \xi_n)} = f'_n(z_n + \rho_n \xi_n) + \frac{a_1(z_n + \rho_n \xi_n)}{a_0(z_n + \rho_n \xi_n)} f_n(z_n + \rho_n \xi_n) =$$

$$f'_{n}(z_{n}+\rho_{n}\xi_{n})+\frac{a_{1}(z_{n}+\rho_{n}\xi_{n})}{a_{0}(z_{n}+\rho_{n}\xi_{n})}[\rho_{n}g_{n}(\xi_{n})+a(z_{n}+\rho_{n}\xi_{n})] \rightarrow g'(\xi_{0})+a'(z_{0})+\frac{a_{1}(z_{0})}{a_{0}(z_{0})}a(z_{0}).$$
 (5)

Then, from (5), we have

$$g'(\xi_{0}) = \lim_{n \to \infty} \frac{L[f_{n}](z_{n} + \rho_{n}\xi_{n})}{a_{0}(z_{n} + \rho_{n}\xi_{n})} - a'(z_{0}) - \frac{a_{1}(z_{0})}{a_{0}(z_{0})}a(z_{0}) = \lim_{n \to \infty} \frac{b(z_{n} + \rho_{n}\xi_{n})}{a_{0}(z_{n} + \rho_{n}\xi_{n})} - a'(z_{0}) - \frac{a_{1}(z_{0})}{a_{0}(z_{0})}a(z_{0}) = \frac{b(z_{0}) - a_{0}(z_{0})a'(z_{0}) - a_{1}(z_{0})a(z_{0})}{a_{0}(z_{0})} = \varphi(z_{0}).$$

$$(6)$$

This is $g(\xi) = 0 \Rightarrow g'(\xi) = \varphi(z_0)$.

Suppose now that $g'(\xi) = \varphi(z_0)$. We claim that $g'(\xi) \not\equiv \varphi(z_0)$. Indeed, If $g'(\xi) \equiv \varphi(z_0)$, we have $g(\xi) = \varphi(z_0)\xi + C$, where C is a constant. By a simple calculation, we obtain $g^{\#}(0) \leq |\varphi(z_0)| \leq A < A + 1$, which contradict that $g^{\#}(0) = A + 1$.

Since $g'(\xi) = \varphi(z_0)$ but $g'(\xi) \not\equiv \varphi(z_0)$ and $\frac{L[f_n](z_n + \rho_n \xi) - b(z_n + \rho_n \xi)}{a_0(z_n + \rho_n \xi)} \Rightarrow g'(\xi) - \varphi(z_0)$ on some neighborhood of the point ξ_0 , $\xi_n \rightarrow \xi_0$, such that $L[f_n(z_n + \rho_n \xi_n)] = b(z_n + \rho_n \xi_n)$. Thus, $f_n(z_n + \rho_n \xi_n) = a(z_n + \rho_n \xi_n)$. It is easy to deduce that $g(\xi_0) = 0$. Thus, we prove i).

Now, we prove ii). From (5), there exist ξ_n , $\xi_n \rightarrow \xi$, we get

$$\frac{L[f_n](z_n + \rho_n \xi_n) - c(z_n + \rho_n \xi_n)}{a_0(z_n + \rho_n \xi_n)} = f'_n(z_n + \rho_n \xi_n) + \frac{a_1(z_n + \rho_n \xi_n)}{a_0(z_n + \rho_n \xi_n)} [\rho_n g_n(\xi_n) + a(z_n + \rho_n \xi_n)] - \frac{c(z_n + \rho_n \xi_n)}{a_0(z_n + \rho_n \xi_n)} \rightarrow g'(\xi) + a'(z_0) + \frac{a_1(z_0)}{a_0(z_0)} a(z_0) - \frac{c(z_0)}{a_0(z_0)} = g'(\xi) - \frac{c(z_0) - a_0(z_0)a'(z_0) - a_1(z_0)a(z_0)}{a_0(z_0)} = g'(\xi) - \lambda. \tag{7}$$

Suppose $g'(\xi_0) = \lambda$, We claim that $g'(\xi) \not\equiv \lambda$. Indeed, If $g'(\xi) \equiv \lambda$, we have $g(\xi) = \lambda \xi + C$, where C is a constant. By a simple calculation, we obtain $g^{\sharp}(0) \leq |\lambda| \leq A < A + 1$, which contradict that $g^{\sharp}(0) = A + 1$.

Thus, by Hurwitz's theorem and (7), there exists a sequence $\xi_n \rightarrow \xi_0$, such that $L[f_n(z_n + \rho_n \xi_n)] - c(z_n + \rho_n \xi_n) = 0$.

From $L[f](z) = c(z) \Rightarrow f(z) = d(z)$, we have $f_n(z_n + \rho_n \xi_n) = d(z_n + \rho_n \xi_n)$. From (4) and $a(z) \neq d(z)$, we deduce

$$g(\xi_0) = \lim_{n \to \infty} \rho_n^{-1} [f_n(z_n + \rho_n \xi_n) - a(z_n + \rho_n \xi_n)] = \lim_{n \to \infty} \rho_n^{-1} [d(z_n + \rho_n \xi_n) - a(z_n + \rho_n \xi_n)] = \infty$$
 (8)

a contradiction. Thus, ii) is proved.

By i), ii) and Lemma 7, we can obtain \mathcal{F} is normal in D.

Theorem 1 is proved completely.

References:

- [1] Yang L. Value distribution theory [M]. Berlin: Springer-Verlag, 1993.
- [2] Schiff J. Normal families[M]. Berlin: Springer-Verlag, 1993.
- [3] Gu Y X, Pang X C, Fang M L. Theory of normal families and its application M. Beijing; Science Press, 2007.
- [4] Hayman W K. Meromorphic functions[M]. Oxford: Clarendon Press, 1964.
- [5] Yang C C, Yi H X. Uniqueness theory of meromorphic functions M, Dordrecht; Kluwer, 2003.
- [6] Chang J M, Fang M L, Zalcman L. Normality and fixed-points of meromorphic functions [J]. Ark Mat, 2005, 43: 307-321.
- [7] Lü F. Normality criteria concering sharing holomorphic functions[J]. Tamkang Journal of Mathematics, 2012, 43:

243-249.

- [8] Pang X C, Zalcman L. Normal families and shared values [J]. Bull London Math Soc, 2000, 32:325-331.
- [9] Bergweiler W, Eremenko A. On the singularities of the inverse to a meromorphic function of finite order [J]. Rev Mat Iberoamericana, 1995, 11:355-373.
- [10] Bergweiler W. On the zeros of certain homogeneous differential polynomial[J]. Arch Math Basel, 1995, 64:199-202.
- [11] Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeros [J]. Acta Math Sinica New Series, 1998, 14:17-26.
- [12] Chang J M, Zalcman L. Meromorphic functions that share a set with their derivatives [J]. J Math Anal Appl, 2008, 338:1020-1028.

分担全纯函数的亚纯函数的正规族

吴 春

(重庆师范大学 数学学院, 重庆 401331)

摘要:主要研究了亚纯函数分担全纯函数的正规族问题,证明了:如果 \mathcal{F} 是区域 D上的亚纯函数族,且满足 $L[f]=a_0 f'+a_1 f(a_0 \neq 0)$, a_0,b_0,c_0,d 为 D上的 4个全纯函数。如果对任意的 $f\in\mathcal{F}$,满足 $a(z)\neq d(z)$, $b(z)+a_1(z)a(z)+a_0(z)a'(z)\neq 2c(z)$, $c(z)-a_0(z)a'(z)-a_1(z)a(z)\neq 0$, $f(z)=a(z)\Leftrightarrow L[f](z)=b(z)$ 且 $L[f](z)=c(z)\Rightarrow f(z)=d(z)$,则 \mathcal{F} 在 D 正规。

关键词:亚纯函数;正规族;分担函数

(责任编辑 黄 颖)