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Periodic Solution in a Discrete Multispecies

Cooperation and Competition Predator-prey Model
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Abstract: In this paper, a discrete multispecies cooperation and competition predator-prey model is investigated. By using
coincidence degree theory and some analysis technique, a new criterion on the existence of positive periodic solution of
difference equations in consideration is established. The paper ends with some interesting numerical simulations that illus-
trate our analytical predictions.
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It is well known that delayed differential equations have been widely used to model phenomena in econom-
ics, biology, medicine, ecology. and other fields. The investigation on delayed differential equations in popula-
tion dynamics not only focus on the discussion of stability, attractivity, and persistence, but also involve many
other dynamical behaviors such as periodic oscillatory, bifurcation and chaos''®. In many applications, the
nature of periodic oscillatory solutions are of great interest. Recently, Zhang and Luo" investigated the posi-
tive periodic solutions of a population model with delay and stage structure for the predator. Gyllenberg et
al. 1) gave a theoretical study on limit cycles of a competitor-competitor-mutualist Lotka-Volterra model. Sen
et al. ' focused on the bifurcation behavior of a ratio-dependent prey-predator model with the Allee effect.
Ding and Liu™ analyzed the existence of positive periodic solution for ratio-dependent N-species predator-prey

system. Xiong and Zhang"'"

addressed the periodic phenomenon of a two-species competitive model with stage
structure. For more research on the periodic behavior of predator-prey models, one can see [11-13].

Many researchers have argued that discrete time models are more suitable to characterize the dynamics of
predator-prey models. In addition, discrete time models play an key roles in computer simulation. Thus, many
researchers considered the complex behaviors of the discrete predator-prey systems governed by difference
equations, see, for example [7,14-24].

In 2011, Zhou' investigated the global attractivity and periodic solution of the following discrete multi-
species coorperation and competition predator-prey system
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where i=1,2,--,n35=1,2,-*,m. x,(k) is the density of prey species i at kth generation. y; (%) is the density
of predator species j at kth generation. In detail, one can see [5].
The main object of this paper is to discuss the dynamical behavior of model (1). By means of the Mawhin’s

continuous theorem*

, we will consider the existence of positive periodic solutions for model (1).
The outline of the article is stated in the following: we shall derive some sufficient conditions for the exist-
ence of periodic behavior of system (1) by applying coincidence degree theory in Section 2. An example with its

numerical simulations are given to illustrate the theoretical findings in Section 3.

1 Existence of positive periodic solutions

For the sake of simplification, we will list the notations which will be used in the later section.

w—1
Ia,: :{091929"'960*1}9?: :iEf(k)a
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where f(k) is an w-periodic sequence of real numbers for k€ Z. Suppose that (H) 7y, 37y 5¢i»dy s pjysey : >R
are w periodic, 1. e. ,

riCktw) =r,; (k) ry (B+w)=ry; (k) ,c; (k+w) =c (R,

dy(ktw =d; (k) py(kt+w)=p; (k) e; (k+w)=e; (k)
for any k€ Z.

Firstly, we will state a important lemma. Denote X,Y by two normed vector spaces, L:Dom L CX—>Y
stands for a linear mapping, N:X—Y is a continuous mapping. We call the mapping L a Fredholm mapping of
index zero if dim Ker L =co dim Im L<C+© is closed in Y. If L is a Fredholm mapping of index zero and there
has continuous projectors P; X—X and Q:Y—Y which has the following peoperties Im P=Ker L ,Im L=
Ker Q=Im(I—Q), then L|Dom L N Ker P: (I—P)X—Im L must be invertible. Denote K as the inverse for
that map. If 2 is an open bounded subset of X, then N is L-compact on 2 if QN() is bounded and K, (I—Q)N;
0—X is compact. Because Im Q is isomorphic to Ker L, there has an isomorphism J:Im Q—>Ker L.

Lemma 1"°!  Suppose that L is a Fredholm mapping of index zero, N is L-compact on Q. If the following
conditions hold: (a) YA€ (0.1) severy solution x of Lx=ANx is such that x & d0Q; (b) QNx7#0, Y 2&€ Ker L)
0 and deg{JQN.QN Ker L ,0}70; Then the equation Lx= Nx has at least one solution which lies in Dom L )
Q.

Lemma 27 Assume that f;Z—>R is T periodic, namely, f(k+T)= f(k), then for every k, k&, € I and
any k€ 7, one gets

T—1 -1
FU < fG)+ D0 | [+ — f() [afl) = flhy) — >0 | fGs+1)— f(s) |,
s=0 s=0
Define L+, ={y={y(R)} :y(B)=(y, () sy, (k) s+ s 3,0, (E))TER™ ,kEZ}. We denote the subspace of

w periodic sequences which have the usual supremum norm || « || as (“Clnsiies |yl =1y &) |+
|y, (B) | 4o+ |y, (B) | for any y={y(k):kEZ} E (. We can easily know that [“ is a finite-dimensional Ba-

nach space.

Let
w—1
S ={y=1{y)} € 1*: > y(k) =0}, (2
k=0
L={y={ykR)€l”.y(k)=hER"" ,REZ}, (3)

then we know that both [{ and /¢ are closed linear subspaces of /* and [*=[{+ (¢ ,dim [ =n+m.
In the sequel, we will ready to establish our result.
Theorem 1 Let S; (; =1,2,+,m) be defined by (16). Suppose that the condition (H) and r,;, >

Epj, (k) exp(S,) are fulfilled, then model (1) posses at least an w periodic solution.
=1

Proof First of all, we make the change of variables
x: () =exp(u; (1)) ,y; () =exp(v; (1)) ,i=1,2,,n355=1,2,+ ,m.
then (1) can be reformulated as
w, k1) —u,; (k)= f; (u; (k) v, (k) ,

D
0, (k1) =0, (B = f, Cu, (B) 0, (B))
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where u€ X ,k€ Z. Then we can easily know that L is a bounded linear operator and
Ker L=1[?,Im L=1[;, dim Ker L=n+m=co dim Im L,

then it follows that L is a Fredholm mapping of index zero. Define
w—1

w—1
Py=13ywyex@e=-13:m ey
s=0
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It is not difficult to show that P and Q are continuous projectors which has the following properties:
Im P=Ker L ,Im L=Ker Q=Im (I—Q).
In addition, the generalized inverse (to L) K,:Im L—>Ker P()Dom L exists and it can be denoted by

w—1 w—1

Kp(2) = D)2 = - >0 (0 — 9)2(5).

5s=0 s=0

Clearly,QN and K,(I—Q) N are continuous. Since X is a finite-dimensional Banach space, using the Ascoli-

Arzela theorem, we can easily know that Kp(I—Q)N2) is compact for any open bounded set 2 C X.
Moreover, QN () is bounded. Thus, N is L-compact on 2 with any open bounded set QCX.
In the sequel, we will seek an suitable open, bounded subset . Considering the operator equation Lu=
ANu,2€ (0,1), one has
w; (k+1) —u, (R)=Af; (u; (k) v, (k) ,
v; (k1) —v; () =Af; (u; (B) s 0; (k).
Assume that for a certain A€ (0,1) ,u(k) = (u; (k) ,v;(£))T € X is an arbitrary solution to system (7), in

(7

view of (7), we get

o1 [ ri: (R)exp(u; (k)

e (B (R expus (k) + D dy GedexpCo, (b)) |-
=1

n — 71w .
e G+ D) baexplu () 1
I= 1,0 (8)
w—1 m n
2 [Z[)ﬂ(k)exp(v,(/z)) — Zeﬂ(k)exp(u,(k))] =rw.
k=0 =1 (=1
It follows from (7) and (8) that
w—1
Dl w e+ —u (b)) | < 21w, (9
k=0
w—1
DUl ok+1) —ou ) |<2rw. (10)
k=0

By the hypothesis u={u(k)} € X, there exist &,%;,0;,0; € I, such that
Z/t;(g,):min;\‘gu {u,(k)} 9%,‘(77,‘):11'18)(/56,”’ {Ll,'(k)}v'vj (6]):min;\‘€]w {'Uj (k)},vj (aj):maxke,w {Uj (k’)} ’ (11)
where i=1,2,+,n3;5=1,2,+-,m. From the first equation of (8), we have

w—1 w—1 m
D Udr (R exp(u (6)) < Fiw s D5 [ 23 ds exp(o(0,))] < riw

k=0 k=0 =1
which leads to

. s
u,.<g,.><1n[ f“},v,w,)gln[ } (12)
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where (=1,2,++,n3;=1,2,+-,m. From the second equation of (8), we get

w—1 m
2 [ijz (k)exp(v,(al))] = .
=1

=0 "=
Then
U[((T[) 2 ln m . (13)
D
=1
In view of (12),(13) and Lemma 2, we get
ol ri
v, () <v,6) + D) |vk+1) —ov,k) |<In| . |+2rw:=M,, (14)
s=0 d,;
=1 Z
w1 7’2;
v, (k) =0,(6)— D) | 0,6+ 1) —o0,() |[=1In| . |—2rw:=m,, (15)
=0 bi
=1 Z
Thus
maxkelw{vi(k)}<max{\1\/lj|,\m,-\}::Sj. (16)
w—1 m n
From the second equation of (8), we have 2 [ij/(/e)exp(sl) —+ Zej,(k)exp(u,('/],))] = ryw » which
k=0 = 1=1 =1
leads to
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In view of (12), (17) and Lemma 2, we get
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Obviously,M; ,m; ,N;.n;,S;, T:(i=1,2,++,n3;5=1,2,++,m) do not depend on A &€ (0,1). Choose M =

m

ZS_, + E T.+ M, , where M, is large enough to make the following max{|u; |, lus | ==y wu, |07 |10 |,
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oy v | }<<M, hold, where Cu; sus s+ yu, svi svs »+**»v, )" is the unique solution of the following equation
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Now we have proved that any solution u={u (%)} ={(u; (k) yus (k) yu; (k))T} of (7) in X satisfies || u | <
M,rEZ.

Let :={u={u(A)}EX: | ull <M}, then it is easy to see that £ is an open, bounded set in X and veri-
fies requirement (a) of Lemma 1. When « € 9Q N Ker L,u={Cuy (k) suy (k) srsu, (B)svy (B) vy (k) yeee,s
v, (E))T} is a constant vector in R with |« ll =lw, |+ lus | ++ 1w, |+ 1o |+ v, | ++-+1v,| =M. Then
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where fu=ry— Z ri (k) expu; (k) —rc.expu; (k) — Zd”(k)exp(vz(k)),
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Now let us consider homotopic ¢ (uy sz s> sty s V1 sVz s 50, s o) = puQNu~+ (1 =) Gu, p € [0,1], where

i —rn cexplu (B) ]
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ri, — i, ¢, explu, (k)

o — 2 puexp(o (k)
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@
I

7 — D puexp(u (k)
=1

o — 2 parexp(o, ()
=1

Choosing J as the identity mapping., then we obtain
deg{JQN Cuy sty s sty 501 5025+ »0,) 52 Ker L350} =deg{QN (uy sty s+ 1ty s01 502+ 50,0 302V Ker L 30} =
deg{oCuy sty s*** sty 01 sz 5250, 5 1) 52V Ker L 30} =deg{@Cu, stty s+ st s 01 505 5+ 50,,,0) ;21 Ker L ;0} =

sign {7’11 T2t T i [i])u] eXp(iuf + iv; ) } =1 £ 0.
i—1 =1

j=1 " i=1

By now. we have proved that all the conditions of Lemma 1 are fulfilled, then we can conclude that Lu=
Nu has at least one solution in Dom L (1. Namely, (4) has at least one w periodic solution in Dom L (102, say
w ={u" By ={(u (k) ,u; (k) u, (k) sv (k) v, (k) ,+++yu, (k))"}, then it follows that
(21 (B) sy (B)seeeyx) (B)wyl (R)sys (B)yeeeyy, (B))T=
CexpCuy (B)) yexpQus (B)) e+ explu, (B)),exp(u; (B)),exp(u; (B)) e expu, (AT,

is a positive w periodic solution of system (1). We complete the proof of Theorem 1.

2 An example and it computer simulations

To illustrate the theoretical predictions, we give an example with its numerical simulations. Let us consid-
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er the following discrete system:
cos km)|1— 2, (k) —
x1(k+1)=x, (k)exp (1* 1 ) O.4+sm6k7r+(o. 6751n41e7'c>~7c1 8
(O.Z—cos kn)x](k)i(O.GJrcos k:’cjyl w1, (23)
5 3
yl(/erl):yl(/e)exp[o’ 8—6cos kn+(0. 6*((5:05 knjxl(k)_(o. 5*1%05 kn)yl(k)]
Here i (&) = 1 — 8% 0 (1) = 0.4+ 30T g gy — 0.6 = MAT o () = C2008 KT g ) —
W%h,rzl(k)zm, e, (k) =0. 6—%,@1 (k) 20'5_1%“ are all 2-periodic func-

tions, and it is easy to see that all the conditions of Theorem 1 are satisfied. Thus system (23) has at least a

positive two-periodic solution which is shown in Fig. 1.
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