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Asymptotical Stability of Complex-valued
Neural Networks with Time Delayed
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Abstract: This paper investigated uniqueness and asymptotical stability of equilibrium point for complex-valued neural net-
works with multiple time delays. Based on the Lyapunov functional method and linear matrix inequalities (LMI), some
sufficient conditions for asymptotical stability of the considered neural networks are presented. Finally. a illustrative exam-
ples are given to demonstrate the theoretical results.
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In recent years, there have been increasing researches interests in analyzing the dynamical behaviors of
neural networks due to their widespread applications in signal processing, pattern recognition, engineering op-
timization, and associative memory, etc. ,» see''”’. Meanwhile, some researchers have investigated impulsive
neural networks and its stability. It is well known that the applications of neural networks rely heavily on the
dynamical behaviors of the networks. However, time delays, which often occur in the processing of informa-
tion storage and transmission, may create bad dynamical behaviors of the networks, for example, oscillation,

519 Hence, it is necessary to study the dynamical behavior of delayed neural net-

instability and bifurcation
works, and a great deal of significant results has been reported in the open literatures.

In the neural networks application, complex signals are preferable. Therefore, it is not surprising to see
that complex-valued neural networks, which deal with complex-valued date, complex-valued weights, and neu-

ron activation functions, have also been widely studied in recent years™ 1,

Thus, it is important to study the
dynamical behaviors of complex-valued recurrent neural networks. As we known, to analyze the stability of
neural networks, there are various approaches, such as Lyspunov function method, energy function method
and synthesis method. Complex-valued neural networks have received increasing interest due to their promising
potential for engineering applications. In [14], the fundamentals of theory and applications of complex-valued
neural networks were described. In [15-16 ], multilayer neural networks based on multivalued neurons were
considered. In [17-18],theory and applications on complex-valued learning algorithms were studied. Most of
these methods are still applicable to the complex-valued neural networks, see, for examplel'?%.

In complex-valued neural networks, their activation function cannot be both bounded and analytic. There-
fore, activation functions are main challenge for complex-valued neural networks. There are various types of
activation functions in complex domain. For different types of activation functions, we need different approa-

ches to study the relevant neural network, which are quite different from those used in real-valued neural net-

% Received: 03-12-2015 Accepted: 10-20-2015
The first author biography: Jianping Li,female, associate professor, mainly engaged in computer application and the neural network., etc. ,
E-mail: 1165055283@ qq. com
R B :2015-03-12 {EEBH:2015-10-20 ML HARET E):2015-12-02  13:26
1EE BT 2R, Lo, BB L 58 5 10 S T E AL 0 i 48 T 4% 45 L E-mail : 1165055283 @qq. com
W £& H AR 3k - http://www. enki. net/kems/detail/50. 1165. n. 20151202, 1326. 020. html



# _1 Jiranping: Asymptotical Stability o Complex-value eura etworks wit 1mme Delaye
%11 LI Jianping: A ical Stability of C 1 lued N IN ks with Time Delayed 103

works. In this paper, we consider a class of activation functions and systematically study the stability problem
and provide some useful results.

Motivated by the mentioned above, in this paper, we shall consider the complex-valued neural networks
with time delay, which simultaneously consider the delays, complex-valued and. Some new sufficient criteria
will be derived for asymptotical stability of its equilibrium point by constructing suitable Lyapunov functional.
The stability conditions are viable in the design and analysis of globally stable complex-valued recurrent neural
networks, and are of great interest in many applications.

The structure of this paper is outlined as follows: In Section 1, we will interpret the complex-valued neu-
ral networks model and some notations. Some globally asymptotically stable conditions are presented in Sec-
tion 2. A illustrative examples are given to demonstrate the effectiveness of the proposed approach in Section

3. Finally, Section 4 concludes the article.

1 Preliminaries

In this paper, a non-linear delay differential equation of the form is follow complex-valued recurrent neural

network
u()=—Cu(t)+Af, (u(®))+Bg, (ult—o))+I, (D

where u(t) ="[u, (t) su; (1) s+ su, (1) JT € C" is the neuron state vector, fo(u(t))=[ for Cur (1)) s foz Cup (1)) 4 +o+,
Fon Gt () JTand go (D)) =[gor Cur (8)) s @02 Cats (1)) 5 *++ s g0 Cu,, (1)) ]7 are the activation functions without and
with time delays whose it consist of complex-valued nonlinear functions, r=1,; >0 are time delays parameters,
I=[I,,1,,-,1,]"€C" is the external input vector. C=diag(c,,cs,**»c,) € R”" is the self-feedback connec-
tion weight matrix, A="la; J,«, € C"”" and B=1[b; J,», € C"" are the connection weight matrix without and
with delays, respectively.

The initial condition associated with neural network (1) is given by

w, (=g (s), —r<<5<0,i=1,2,,n,

where Re(¢; (s)) and Im(g,(s)) are continuous on [ —z,0].

Assumption 1 Let z=x+1iy, where i denotes the imaginary unit, that is i"=—1. f;(«) can be expressed
by separating into its real and imaginary part as

fiGo=7f,; (@) +if25 (),

where f1;(x) €R and f5,;(y) €ER. f1;(x) and f,; (y) satisfies the following condition:

O<M<g.,
a—f !

O R )
a

<, Va,.BER,j=1,2,,n. 3

For notational convenience, we will always shift an intended equilibrium point «* =[u; sus »+**,u, |T€C"

of system (1) to the origin by letting 2(¢1) =u(z) —u; , which yields the following system:
2()=—Cz () TAf(z())+Bg ((z(t—(1))), (5)

where z() =[ 2z, (t) 2, () ,+++, 2, (1) ]T € C" is the neuron state vector, f(z(t))=[f1 (1 (1)) s fo (2 (£))yeee,
foCz, ()] and g(z(D)=[g (2, (1)) s g, (2, (1)) 4+, g, (2, (£))]"denotes the activation function vector with
fiCz)=Ffo(z;i+u)—fo(u”) and g, (z;)) =g (z;tu’ ) —gou(u’ ), i=1,2,--,n. Note that function f;(z(z))
and g, (2,(¢)) here satisfy condition (3) and (4).

Lemma1l Let X,YE€R", matrix P€ R""and Q a positive definite matrix with appropriate dimensions,
then we have following inequality hold:

XTY+YTX<X'QX+YQ'Y.

Lemma 2 (Schur Complement) Let X be a symmetric matrix given by
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A B
X= ’
BT C

let S be the Schur complement of A in X, that is S=A—BC 'B".
Let x(1) =Re(z(#)),y (1) =Im (2 (), Ay =Re(A), A, =Im(A), B, =Re(B),B, =Im(B), ¢, (1) =
Re(e; (s)) 50, (1) =Im(g,; (s)); then neural network (5) can be rewritten as
2(D)=—Cx(W+A, fLa()—A, L (y@))+Big,(x()) — By g, (y(1)),

y(f) — _Cy(t) +A2‘f1 (l'(t))JFA]fz (y(t))+Bzg1 (l'(t) ) +Blg2 (y(t)). (6)
The initial condition of neural network (6) is of the form
x: () =¢1; (s)

77T<S<Ovl‘:1529'“7n.
i (5) =2 (s)

In this paper, we also use the following notations. Let A be a complex-valued matrix, A" denotes the

complex conjugate transpose of A. Let ¢ be a complex number, 2 denotes the complex conjugate of z.
2 Stability analysis

In the section, two criteria are obtained for the stability of neural network with time-vary delays via Lyapi-
nov stability theorem for functional differential equations and linear matrix inequality (LMI) technique.

Theorem 1 The network activation function satisfy Assumption 1. Then, neural network (1) is Asymp-
totical stability if there exist positive definite matrix P and positive definite Hermitian matrices Q=Q, +iQ; »S
=S, +iS, .M=M, +iM,, and N=N, +iN, such that the following LLMIs hold:

A= (“O“ ’ j>o, €
0 Q.
Where
= PA,>, PA,>S, PB, PB, =, PA,>, PA,>S, PB, PB,
* Q 0 0 0 % Q: 0 0 0
0,=| * * S, 0 0 |02, =] * * S, 0 0 ¥
* % * M, 0 * * * M, 0
* % % % N, % * % * N,

E =PC+PC—3(Q +S)H3 —2;(M,+NZ;, 5, =PC+PC—2,(Q,+S,)3, —=; (M, +N,)Z;.
Proof To prove the theorem 1, we will divide to two steps,
Step 1:We assume that the solution 274(0,0,++,0)7 is also its equilibrium, i. e. ,
—Cz+Af(2)+Bg(2)=0,
Multiplying both sides of above equation by 2% P, we obtain
—22"PCz+2z PAf(2)+2=%2 PBg(2)=0, €D
Noting that
22" PAf(2)<2Re(Z" PAf(2)) =2"PA, f1 () +(fL(Z)HTATPT—
I'PA, () —(fL(ONTATPZ+3'PA, [, 3+ (f, (3 TATPy+
Y'PA, [+ (f1GNDTAIPY(f1(Z)N'Q, f1 () +
"PAQITATP T+ (f, (NS, £, (3)+2TPA,S; AP+
(OO f2 () +F'PAQ"ATP Yy + (1 (DTS, f1 () +
'PA,ST'AJPy=2(PA,Q,'ATP+PA,S,'A;P)x+
(LGRS fL )+ (PA,Q, 'ATP+PA,S, "ATP)y+
(foOONT(Q,+Sy) fr 332" (PA,Q,'ATP+PA,S, ' AJP+3,(Q, +S)HZ)x+
' (PA,Q;'A{P+PA,S, 'AJP+2,(Q.+S:)3,) 5, (10)
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Similarly, we have that
2 2" PBg (3)<<\2Re(2" PBg (2))<<
:’;T(PBIMTIBTP_’_PB_)]\]';IB}P—FZE, (Ml +N1 )23 ):’Z+
y'(PB\M, 'M{P+PB,N,'B;P+X, (M, +N,)Z)}. (1D

Introducing (10) and (11) to (9), we can derive
—2"(PCH+CP—PA,Q,'A[P—PA,S,'AJP—=,(Q+S)HZ)a—
3T (PC+CP—PA,Q; 'ATP—PA,ST'ATP—3,(Q, +S,)3,)y—
2" (PB,M;'B{P—PB,N;'BjP—3,(M,+N)3)x—
3" (PB,M;'M{P—PB,N,'BiP—=, (M, +N,)3,)y<
— (270, 2+370, y<—EF"'AE=0,

where E=(2",5") .0, =PC+CP—PA,Q, 'A[P—PA,S,' AJP—3,(Q, +S)Z, +PB,M, 'BIP—PB,N, 'B;P—

(M, +N,)Z,.

Which implies A<L0. It leads to a contradiction with Eq. (7). Therefore, there exists unique equilibrium

of system (1).

Step 2: To prove the asymptotical stability of the origin of system (1), we construct the following Lya-

punov functional;

V(z()) =2 (1) Pz (1) Jrj:,,(gl (x(HNDT(M; + Ny g (x(s))ds +
|| Gt M+ Nog () ds
Deriving the derivative of V(2(#)), we can obtain that
DV =2" (WP +2" (DP () + (g (xNT(M,+N g (x())+
(g (xONT (M, + N2 g (2())— (g (=" (M, + N g (e (t—1) —
(g2 (x (=) " (My,+ Ny g, (a(t—1))=—2" (1) (CP+PC)2 (1) +
2" (DPAf () +(f(z(DNTATPz(t) +=2" (1)PBg (z(t—1)) +
(gz—DN)"B"Pz () + (g, (x(ONDT (M, + N g (x(t))+
(g2 (O (M, +Ny) gy (D)) — (g (at—D D" (M +NpD g (2 (t—7)) —
(g (x =) (M, +N,y) g, (x(t—1)).
By (10) and (11), we have
D'V(z)<—=z" (1) (CPH+PC)z(t) +2Re(z" ()PAF (2()))+
2Re(z" ())PBg (z(t— 1))+ (g (DT (M, +N D g, (x () +
(g (O (M, +Ny) gy (D)) — (g (aGt—D D" (M +NpD g (at—7)) —
(g (=" (M, + N g, (x(t—1)) <
—a2"(PC+CP—PA Qi 'ATP—PA,S;'ATP—3,(Q,+S)HZ)Da—
y'(PCH+CP—PA,Q;'ATP—PA,S'AJP—2,(Q.+S.)Z) y+
27 (PB,M;'BfP+PB,N;'B;P+3,(M, +N)Z)x+
y"(PB,M;'B{P+PB,N;'B;P+3, (M, +N)Z)y <—(2"0,x+y"0, ) <—E"AF

where /= (2",y").

Hence, D"V (2(:))<C0 when A>>0. Then, by lemma 2, A>>0 if and only if LMI (7) holds, which com-

pletes the proof of the theorem 1.

If neural network (1) is not complex-valued, thus it becomes common networks. We will get following

corollary.

Corollary 1 The network activation function satisfy Assumption 1. Then, neural network (1) is Asymp-
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totical stability if there exist positive definite matrix P, Q and S, such that the following LLMIs hold:

T AP B'P
A x —Q 0 |<o0, 12
* * —S

Where V= 7m7m+2] QE} +EZSEZ .
Proof To prove the Corollary 1, we construct the following Lyapunov functional:
Viz(t)) ==z"()Pz (1) —l—J (g(x () TSg (x(s))ds

Deriving the derivative of V(2(z)), we can obtain that
D'V(z)<—=2" () (CP+PC)z(1) + 22" (DPAf (2(1))+22" ()PBg (2 (t— (1)) X
(gz(ON"Sg (x(D))— (g1 (x(t—)))TSg, (x(t—T))<
2T()(—PC—CP+PA'Q 'AP+PB"S 'BP+3,0Q3, +3,8%,)=(1) <0,

Hence, D"V (2(1))<C0 when A"<C0. Then, by lemma 2, A"<C0 if and only if LMI (12) holds, which com-
pletes the proof of the Corollary 1.

3 Numerical examples

In this section, we will present a examples to illustrate the effectives of our results. Consider a two-neuron

complex-valued recurrent neural network described as follows:

2 2
LD =crz (D + Djanf; (5 W)+ Dibug; (5, —1,0) + 1,
i=1 i=1

50D =z (D) + Dlasf, (2, (D) + Dbyg, (2t —1,)0) + 1, (13)
ji=1 j=1

Assume that the network parameters of neural system (13) are given as follows:

—1.5+i —1—1.3i . 1+1.8  1—i o f? 0
—1—i —2+i ) —14+2.4i 1+21) 7 o 4)]

_0.1+0. li,IZZO.l_O. 11’ 12:0.1_0. linH:O.Sy T11:O.47 TH:O.B’ T11:0-6.

I,

We select the activation function is following

. _l—e . 1 L _l—e . 1 .
fj(zj(t»il#»e*“; +1 1+e,yj ’ },](Z](t)) 1+ei‘yi +1 1"*67"] (] 192).

We use the Matlab LMI Control Toolbox to solve the LMIs in (7), and obtain the following feasible solu-
tion

b ] 09113 03645 _[0.097 0 0.004 5
—e - ’
—0.3645 0.749 6 ' 0.0045 0.1137
0 ; 0 0.9113] [ 0.1092  —0.070 2
, — € ) —e )
’ —0.911 3 0 : —0.070 2 0.1355
0 0.911 3 0.7955 0.020 8
Sz:eill ’Mlzefll ,
—0.911 3 0 0.020 8 0.827 1
0 0.911 3 0.2157  0.069 4
M, =¢ ! N, =c ,
—0.911 3 0 —0.069 4 0.2333
N 0 0.911 3
g —€ .
’ —0.911 3 0

Therefore, the delayed neural network is asymptotical stable. .

Fig. 1 depicts the time responses of the variables of the neural networks (13) with input I=(0.1-+0. 1i,
0.1—0. 11).
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Transient stats of the neural network in example

Recently, numerous works have been published on the stability analysis of various real-valued neural net-

works, little attention has been paid to the investigation on the stability of complex-valued neural networks.

This paper has focused on uniqueness and asymptotical stability of equilibrium point for complex-valued neural

networks with multiple time delays with respect to the Assumption 1 activation functions. Some new criterions

for robust of complex-valued neural networks with time-delays has been presented that established a new time-

independent relationship between the networks of the neural system. A illustrate examples are given to demon-

strate the results. Some research methods used in other complex-valued NNs could be practicable.
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