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Abstract; [ Purposes ] The semi-prequasi-invexity and its applications are further investigated. [ Methods] With assumptions
Bl, B2, and denseness results. [Findings] Firstly, under more weaker assumptions, some new characterizations of semi-
prequasi-invexity are obtained. Then, the optimality conditions of semi-prequasi-invex type mathematical programming
problems are given in the case of without constraints and with inequality constraints, respectively. Finally, several applica-
ble results of semi-prequasi-invexity in multiobjective optimization problem are gained, and examples are also shown to il-
lustrate the results. [ Conclusions] The obtained results extend and improve some latest literatures.
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Convexity and generalized convexity play an essential role in optimization theory. Therefore, seeking some
practical criteria for convexity or generalized convexity is especially crucial. In recent decades, there has been a
multitude of compositions exploring on this subject™ . Particularly, [1-2] established the characterizations
for the classical invexity. Yang et al. ! founded the properties of prequasi-invex functions under a semicontinu-

iL6-71

ity condition. Luo et al. "*! improved the results in [ 3] under weaker assumptions. Yang and Li presented

some properties of preinvex functions and semistrictly preinvex functions. Then, two significant generaliza-
tions of convex functions are the so-called semi-preinvex function and G-preinvex functions were introduced by
Yang™ and Antczak''?!. And then, Luo et al. ©! discussed the relationships between G-preinvex functions and

1 [10]

semistrictly G-preinvex functions. Very recently, Zhao et a obtained some properties and important char-
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acterizations of semi-prequasi-invexity. Yang''established an important property regarding to condition C for
preinvexity.

Motivated by the works of [8-117, in this paper, we give some new results for semi-prequasi-invexity.
Firstly, under weaker assumptions, we provide some new characterizations of semi-prequasi-invexity, which
improve [10]. Then, we discuss the applications of semi-prequasi-invex type functions without constraints and
with inequality constraints nonlinear programming,respectively. Finally, the applications of semi-prequasi-in-
vex type functions in multiobjective optimization problem are studied, and some examples are also given to

illustrate the results.

1 Preliminaries

Now let us recall some fundamental concepts about semi-prequasi-invexity.

Definition 1 A set K&R" is said to be semi-connected if there exists a vector-valued function 7: K X K X
[0,1]>K, such that x,y€K,A€[0,1]=y+an(x,y.1) EK.

Example 1 This example illustrates the existence of semi-connected set. Let K=[—1,0)U (0,17, and
Ty, 1=22>0,1=>y>0
r—y,—1<2r<<0, —1<<y<<0

n(x,y,A) =1 —

=20, —1<<y<0 - Then, it is easy to verify that

+5,—1<2<<0,1=y>0

pofie pofe
CIESEN PN

yt+ap(z,y,HDEK, Va,yEK,AE[0,1],

This is, K is a semi-connected set with respect to y(x,y,1).

The following class of semi-prequasi-invex functions was introduced by Yang"™.

Definition 2 Let K&R" be a semi-connected set with respect to 7. Let 7: K XK X[0,1]>K. We say that
f:K—R is semi-prequasi-invex if,

SyFApx.y.))<max{f(x),f(y)}, Yx,yEK,A€[0,1].
We give the following example to illustrate the existence of semi-pregsi-invex functions.
1,220 xty—A,2=0,y=0 or x<<0,y<<0
Example 2 Let K=R, f(x)= sz, y, ) = . Then, it is
0,2<0 x—y—A,2=0,y<0 or x<0,y=0

easy to check that K is a semi-connected set with respect to ,and f is a semi-prequai-invex function.

Remark 1 It is clear that a prequasi-invex function is a semi-prequasi-invex function when n(x,y,A) =
7(x,y). But the converse is not true.

Definition 3 Let K&R" be a semi-connected set with respect to 7: KX KX[0,1]>K. Let f:K—>R. We
say that f is semistrictly semi-prequasi-invex if,

SOFApx,y, D)) <<max{f(x), f(y},Vx,yc K, f(x)7F f(y),A€ (0,D.

Definition 4 Let K&R" be a semi-connected set with respect to 7: K X KX[0,1]>K. Let f: K—~R. We

say that f is strictly semi-prequasi-invex if,
fy+antx,y,20)<<max{f(x), f(y)}, Vx,y€K,x#y,A€(0,1).
Remark 2 It is apparent that strict semi-prequasi-invexity implies semistrict semi-prequasi-invexity.
Example 3 This example illustrates that a semistrictly semi-prequasi-invex function is unnecessarily a

semi-prequsai-invex function and a strictly semi-prequsai-invex function. Let K=R,
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r—ytA,x=0,y=0

=y —A,x<0,y<0
x—ytA,a>1,y<—1
x—y—A,x—1,y>1
y—a+A, —1<ax<<0,y=>0
y—x—2A,x=0, — 1<<y<W0
y—ar—A, 0 a<<1,y<0
y—a+A, 20,0 y<1

It is obvious that K is a semi-connected set and we can check that f is a semistrictly semi-prequasi-invex

flx)= s(xyy,d) =

function with respect to 5 on K. However, let x=4,y= *4,/11%, we have
. 1 1N (1) 1 . !
f(y+/\77(1',y,/\))—f(—4+?(4*(*4)+?jj—j(zj——E>max{f(4),f(—4)}——§.

Thus, f is neither a semi-prequasi-invex function for the same 7, nor a strictly semi-prequasi-invex func-
tion for the same 7.

In the sequel, we give a basic result on semi-prequasi-invex type function.

Theorem 1 Let K be a nonempty semi-connected set in R" with respect to 7: K XK X[0,1]>K,and let
/:K—R be a semistrictly semi-prequasi-invex function for the same 7, and g:I—>R be a strictly increasing
function, where range( f)=1I. Then, the composite function g( f) is a semistricly semi-prequasi-invex function
on K.

Proof For any x,y€ K,A€ (0,1, if g(f(x))Fg(f(y)), then, f(x)7# f(y). Since f is a semistricly
semi-prequasi-invex function, we have f(y+2An(x,y,2)) <<max{f(x), f(y)}. From the strictly increasing
property of g, we have

gl fy+Hapx,y.2)) J<<g(max{ f(x), f(y})=max{g(f(x)),g(f(y))}.
Hence, g(f) is a semistricly semi-prequasi-invex function on K.

Remark 3 In Theorem 3.2 of [8], the assumption of convexity for g: >R is required, while it’s not re-
quired in Theorem 1, and it’s extended to semi-prequasi-invexity case.

In researching the characterizations for semi-prequasi-invex functions, we demand the following condi-

tions, which have been presented by Zhao'"!.

Condition Bl 5(x,y,A) is said to satisfy Condition Bl if, for all x,y&€ K and a,A; 54, € [0,1],
yH(d—=)A tar)plx,y, (1—=a)A; taky) =z Faplze 21 5a)

where z; =y+2A,9(x,y,4)) and z; =y+ 2. p(x,y,1,).

Condition B2 75(x,y,A) is said to satisfy Condition B2 if, for all x,y€ K and «,A€[0,1],

yHd—A+a)px,y, (1—)A+a) =zFap(x,z,a)

where z=y+2Ay(x,y,A).

Condition B3 Let K be semi-connected set with respect to 7(x,y,A), f(x) is said to satisfy Condition B3
if, for all x,y €K, f(y+nlx,y,1)<f(x).

Example 4 This example illustrates the existence of y(x,y,A), which satisfies Condition Bl and B2 on
the semi-connected set K. Let K=R and y(x,y,A) =x—y.

It is easy to see that K is a semi-connected set with respect to 7(x,y,4), and from the definition of Condi-

tion Bl and B2, we can verify that y(x,y,A) satisfies Conditions Bl and B2 on the semi-connected set K.
2 Some new characterizations of semi-prequasi-invex type functions

Throughout this section, let K be a semi-connected set with respect to (x,y,1) in R".
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Lemma 1) Suppose that p(x,y,0 satisfies Condition Bl, f(x) satisfies Condition B3, and if there ex-
ists € (0,1), such that f(y+an(x,y.a))<<max{f(x),f(y)}. Vx,y€ K, then, the set A defined below is
dense in the unit interval [0, 1]. A={A€[0,1]: f(y+Ay(x,y,A))<max{f(x),f(y},Vx,yEK}.

Now, we improve Lemma 1 by Lemma 2 as follows.

Lemma 2 Suppose that y(x,y,0) satisfies Condition Bl, f(x) satisfies Condition B3, and for each pair of
x,y€ K., if there exists a,.,€ (0,1), such that f(y+a,,n(x,y.a,,))<max{f(x),f(y)},then, the set A is
dense in the unit interval [0, 1], A={A€[0,1]: f(y+Ap(x,y,A))<max{f(x),f(y},Vx,yEKI.

Proof It is explicit from Condition B3 that 0,1€ A. Below, on the contradiction. Suppose that A is not
dense in [0, 1], this is, there exist A, € (0,1) and a neighborhood of A,, denoted by N(A,), such that

NQHNA=D. (D

Since 0,1€ A, it is clear that (A€ A A=A} AT, {AEA AL ) ZD. Let A, =inf{A€ A A=A, ), A, =
sup{A€A:A<<A,}. By (1), we have 0=<<A,<{A, <(1. Since, for each pair of x,y€ K, max{a,,,(1—a,,)} €
(0,1), there always exist p; yu, €A with gy =1, and p; <A, , such that

(max{a,., > (1—a.,) 1) Gy —pe )<<Ay —2s. (2

For each pair of x,y€ K, denote 2y =y+myp(x,y,p1)szo =y+pyplx,y,pu). Let

A=ae ot Q—a D € (o).
By Condition B1l, we have y-’-i‘/](x,y,i) =z, Ta. .., (=20, .., ) which implies that,
Ftag(a,y ) = f(zta. o gCzizsan o)) <max{ f(2), ()} <
max{max{ f(x), f(y)},max{f(x), f(y)}}<<max{f(x), f(y},
which means A€ A. We divide the proof by two cases of A.
If 12/\0 , then by (2), we have X*;zz =a. .., (u1 —p)<<A; —2,. It follows that 1</\1 , which contradicts

-
with the definition of A;.

If A<<A,» then we can conclude again from (2) that A=>2,, which contradicts with the definition of A..
Hence, the result is obtained.

Remark 4 In Lemma 1, a uniform A€ (0,1) is needed, while in Lemma 2 this condition has been weak-
ened to a great extent.

Theorem 2”7 Let f(x) be upper semi-continuous on K and satisfy Condition B3. Let p(x,y,0) satisly
Conditions B1,B2, and IK}LITOI Op(x,y,0)=0 for all x,y& K. Then, if there exists A€ (0,1), such that

fyt+apx.y,20)<max{f(x), f(y)}, Vx,yEK,
then f(x) is semi-prequasi-invex with respect to 7(x,y,0 on K.
The above Theorem 2 can be improved as follows.
Theorem 3 Let f(x) be upper semi-continuous on K and satisfies Condition B3. Let 7(x,y,0) satisfies

Conditions B1, B2, and lim 09p(x,y,0) =0 for all x,y& K. For each pair of x,y€ K, if there exists A,,, € (0,1),
Ov 0

such that f(y+2.,n(x,y.A.,))<<max{f(x),f(y)}, then f(x) is semi-prequasi-invex with respect to 7(x,y,0)
on K.
Proof By contradiction, we assume that f(x) is not semi-prequasi-invex with respect to y(x,y.0 on K.
Then, there exist x,y€ K and a€ (0,1), such that
SOytap(xsysa)) >max{ f(x), f(y)}. (3)
It is evident by Lemma 2 that the set A is dense in [0, 17,
A={a€[0,1]: f(ytan(x,y,e))<max{f(x), f[(y)},Vx,yEK].

Consequently, there exists a sequence {a,} &A[1(0,1) with a,<la such that lim a,~>a. Let z=y+ap(x,y,a), and
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- a—a, a—a,
yn7y+(1_a”j77(x7y91_a”j-

By 1if‘n Op(x,y,0)=0, we have limy,—y. Since K is semi-connected with respect to p(x,y,0) , it follows
Gy 0 n>oo

a—a,

l1—a,

from € (0,1) that y, € K. Again, from Condition B2 we obtain

a—a,

z:y—ﬁ—Er;(x,y,E):y+(a,,+(1*a,,)l_an(x,y,amL(lfa,,)l

Q:Z"):yn-i—a,,r}(xayn sa,).

n

By the upper semi-continuity property of f(x) on K, there exists N>0 such that, for all n=>N,

Fy )< f(y)+e, Ve=>0, D

By @, € A and (4), it follow that, for all n=>N,

f()=f(y+ap(x,y,a)) <max{f(x),f(y,)<max{f(x),f(y)+e}.
Since ¢ is arbitrary, then f(z)=f(y+ap(x,y,a))<<max{ f(x),f(y)}. which contradicts (3). This completes
the proof.

Theorem 4" Let p(x,y.0 satisfy Conditions B1, B2. Let f(x) be semistrictly semi-prequasi-invex with
respect to 7(x,y,0) on K, and satisfy Condition B3. Then, if there exists & (0,1), such that for all x,y€ K
with x7#y, f(y+anp(x,y,a))<max{f(x),f(y)}, then f(x) is strictly semi-prequasi-invex with respect to
7(x,y,0 on K.

Now, we improve the above theorem, as follows.

Theorem 5 Let 5(x,y,0) satisfy Conditions Bl, B2. Let f(x) be semistrictly semi-prequasi-invex with
respect to 7(x,y,0) on K. Then, for each pair x,y€ K with x#y, if there exists a,., € (0,1) such that,

Fyta,m(x,ysac,))<<max{f(x), f(y)}, (5
then f(x) is strictly semi-prequasi-invex with respect to y(x,y,0) on K.

Proof Suppose there exist x,y€ K,x7y,A€ (0,1) such that f(y+2an(x.y,2))=max!{f(x),f(y)}. De-

noted z=y+Ay(x,y,1), then
f()=max{ f(x), f(y)). (6)

If f(x)# f(y), by the semistrict semi-prequasi-invexity of f, we have f(z)<max{f(x),f(y)}, which

contradicts (6). Thus, we obtain f(x)=f(y), and also by (6), we have

f)=F(x)=f(y. D)
Note that the pair x,y is distinct. From (5), there exists a,,, € (0,1), such that
SOyTan,n(xsy,an,))<f(x)=f(y). (8)

Denote y=y+a,.,n(x,y.a,.,).

If 2<<a,.,, let p=C(a,,—A)/a,.,>then p€ (0,1), according to Condition Bl we have

yrup(ysys) =y +(A—wa.)px,y. (1 —wa,,) =y +iplx,y,A) =z,

which, together with (8) and f is semistrictly semi-prequasi-invex function with respect to p(x,y,0) on K,
yields f(2) = f(y+pp(y,y.))<<max{f(y), f(y)}=f(y). This contradicts (7).

If A>>a,.,, define v=QA—a,,,)/(1—a,,), sov€ (0,1), from Condition B2 we obtain

ytoplx,y, )=y (A —wa., toI)gplx,y, (1 —va., Tv)=y+Ap(x,y,1) =z.
(8) and f is semistrictly semi-prequasi-invex function with respect to 7(x,y,0 on K, implies that
f()=fy+opx,y,v))<<max!{f(y), fx)}=f(x),

which contradicts (7). This completes the proof.

Remark 5 A uniform « € (0,1) is needed in Theorem 47, while in Theorem 5 it is weakened to a great
extent. Moreover, the Condition B3 is deleted here.

Example 5 This example illustrates that, in Theorem 5, for each pair x,y€ K with x7#y for all a,,, € (0,1)
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if (5) does not hold, then the result maybe not true. Let K=[0,+°),9(z,y,A) =x—y, and f(z) =
—x,x<l
—la=1"

It is effortless to see that K is a semi-connected set with respect to 5(x,y,4), and from the definition of
Condition Bl and B2, we can verify that g(z,y,A) satisfies Conditions Bl and B2 on the semi-connected set K.
Then, according to Definition 3, we can cheek that f(x) is a semistrict semi-prequasi-invex function. Howev-
er, for arbitrarily x,y=1,.27#y,a,.,€(0,1), we have f(y+a, ,p(x,y,a,.,))Lmax{ f(x), f(3)}.

Letting 2=2,y=3,1€ (0,1), we have f(3+A9(2,3,))=f3—1)=—1= f(x)= f(y). Thus, f(x) is

not a strict semi-prequasi-invex function with respect to the same n(x,y,4) on K.

3 Applications in two kinds of nonlinear programming problems

The applications of semi-prequasi-invex type functions without constraints and with inequality constraints
nonlinear programming will be discussed, respectively. Now, we first consider the following nonlinear pro-
gramming problem without constraints.

(Py):min f(x),
x€K,
where K is a subset of R", f(x) is a real-valued function on K.

Theorem 6 For (P,), suppose that KER" be a semi-connected set with respect to 7: K XKX[0,1]—>K.
If f is semistrictly semi-prequasi-invex and semi-prequasi-invex function with respect to 7, and Elgl Ap(x,y.4) =0,
then, (i) any local efficient solution of (P,) is a global efficient solution of (P,);(ii) the solution set of (P,) is
a semi-connected set with respect to the same 7.

Proof (i) Assume on the contrary that there exists y & K such that, y is a local efficient solution of (P,),
but is not a global efficient solution of (P,). Then, there exists x&€ K such that f(x)<f(y).

And from the semistrictly semi-prequasi-invexity of f, we have

SyFanplx,y,A))<<max{f(x), f(y)}=f(y), YA€ (0,D). €D
Since A can be arbitrary small, (9) implies that y is not a local efficient solution of (P,), which is a contradiction.

(i) Let a:ig}i;f(x) , and S={x€K: f(x)=a}. Now, for any x,y€ S, by the semi-prequasi-invexity of

J/ on K with respect to 5, we have
FyFAptx.y.D)<max{ f(x), f(y)}=a, VAE[0,1 ]=y+Ap(x,y,A)ES,YAE[0,1].
Hence, the solution set of (P;) is a semi-connected set with respect to 7.
Theorem 7 Let f(x) be strictly semi-prequasi-invex with respect to the vector-valued function 7, and

lim Ay(x,y,A)=0. Then, the solution of (P,) is unique.

Av 0

Proof On the contrary, let y be a solution of (P,), if the solution of (P,) is not unique. Then, there ex-
ists x€ K such that x7#y and f(x)=f(y). Since, f(x) be strictly semi-prequasi-invex function with respect to
the vector-valued function », we obtain

SO+agx,y,20)<<f(y), YA€ (0,1,
which implies that y is not a solution of (P,), this is a contradiction.
We give the following example to illustrate the correctness of the Theorem 6.
Example 6 Let K=[—1,1],f(x)=2" and p(z,y,A) =Ax—y.

Then, it is easy to affirm that K is a semi-connected set with respect to », and lifn Ap(zx,y,A) =0, and
Ay 0

S(2) is a strictly semi-prequai-invex function with respect to the same 5y on K. Obviously, we can see that the
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solution set of (P,) is a singleton set {0}, that is, the solution of (P,) is x=0, and it is unique.
Now, we consider the following nonlinear programming problem with inequality constraints.
(Py): min f(x),
g, (0)<0, ieJ={1,,m}, x€K,
Where K is a subset of R", f,g,(i€ J) are real-valued functions on K. And D={x€ K| g:(x)<X0, i€ ]} de-
notes the feasible set of (P;).

Theorem 8 For (P,), suppose that K<<R” be a semi-connected set with respect to 7: K X K X [0,1]—K,
and f,g;(i€J) are semi-prequasi-invex functions with respect to the same 5. Then, the feasible set D and op-
timal solution set of (P,) is a semi-connected set with respect to the same 7.

Proof (a) suppose x,y€ D, we have y+An(x,y.A) € K,and g, (x)<<0,g,(y)<<0, Vi€ J. By the semi-
prequasi-invexity of g, (i€ J) on K, we obtain

g (yFAp(x,y.A))<max{g,(x),g, (<0, YA€ [0,1], i€ ].
That is, y+ap(x,y,A) €D, YA€ [0,1].
Thus, the feasible D is a semi-connected set with respect to the same .
(b) Let C denote the optimal solution set of (P,), then, for any x,y€ C, we have f(x)=f(y).
From the result of part (a) we get y+aAn(x,y,A) €D.
Suppose, by contradiction that y+Ay(x,y,A) € C, it follows that
SOF+aglx,y, ) > f(x)=f(y). (10)
Since f(x) is semi-prequasi-invex function with respect to 5, we have
Fyt+aplx,y.20)<max{f(x), f(y)}=f(y) . VA€[0,1],
which contradicts (10). Thus, the optimal solution set C is a semi-connected set with respect to the same 7.
Example 7 This example illustrates the correctness of Theorem 8. Let K=R, f(x)= b0 » g1 ()=
0,20
r—y+tiA,2>0,y>0
2,2>0 3,2>0 =y =2, a0, y<0
0,20 g:(x)= 0,2<0 and plry.4)= y— 2+ A, x<L0,y>0
y—r—A,2>>0,y<0

Obviously, we can get that K is a semi-connected set with respect to 5, and f,g:,g: are semi-prequai-in-
vex functions with respect to the same y on K. Then, it is easy accessible to ascertain that (—<=,0] is the fea-
sible set and the solution set of (P,). According to y+aAnp(x,y,A)=y+A(xz—y—2)E(—==,0],¥Ya€[0,1],
we obtain that the feasible set D and optimal solution set of (P,) are semi-connected sets with respect to the
same 7. Thus, the conclusion of Theorem § holds.

Theorem 9 For (P,), suppose that K&R" be a semi-connected set with respect to 7: K XK X[0,1]—>K,

and f(x) is semistrictly semi-prequasi-invex function with lifn Ap(x,y,A)=0. Then, any local efficient solution
Ay 0

of (P;) is a global efficient solution of (P;).

The proof is similar to the Theorem 6, hence, the proof is omitted.

4 Applications in multiobjective optimization problem

Now, we consider the following multiobjective optimization problem
(MP) :min f(x) - (f] (x) P 9f,,, (x) )T ’
s. t. xe K ’

where f:K—>R" is a vector-valued function and K< R" is a semi-connected set with respect to 7: K X K X
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[0,1]>K.

Let R ={xER" [x=(x, ", 2,) »2;, =0, 1<i<m} ,RT . = {xER" [x= (2, .+ 02,,) s, >0, 1< <m ).

In the sequel, we recall the definitions of efficient solution and weakly efficient solution.

Definition 5 A point x€ K is called a global efficient solution of (MP), if there does not exists any
point y€ K, such that f(y) € f(x) —R%\{0}.

A point x€ K is called a local efficient solution of (MP), if there is a neighborhood N(x) of x, such that
there does not exists any point y€ K[1N(x), such that f(y) € f(x)—R%\{0}.

Definition 6" A point X€ K is called a global weakly efficient solution of (MP), if there does not exists
any point y&€ K, such that f(y) € f(x)—R% ..

A point x€ K is called a local weakly efficient solution of (MP), if there is a neighborhood N(x) of x,
such that there does not exists any point yE K N(x), s. t. f(y) &€ f(x)—R% ..

Then, we give a result on semistrictly semi-prequasi-invex function.

Theorem 10" Let f(x) be semi-prequasi-invex with respect to 7(x,y,0) on K. Let 7(x,y,0) satisfy
Conditions Bl and B2. Then, if there exists a € (0,1) such that, for all x,y€ K with f(x)# f(y),

Sytap(x,y.a))<<max{f(x), f(y}, f[(y+T—a)p(x,y,1—a))<<max{f(x), f(y)},
then, f(x) is semistrictly semi-prequasi-invex with respect to 7(x,y.0 on K.

Now, we improve the above theorem, as follows.

Theorem 11 Let f(x) be semi-prequasi-invex with respect to 7(x,y,0) on K. Let y(x,y,0) satisfy Condi-
tions B1l, B2 and 1§ifg1 On(x,y,0) =0 for all x,y&€ K. Then, if there exists a &€ (0,1) such that, for all x,y€ K
with

FOZfy), fy+ A=) p(xsys1—a))<<max{f(x),f(y)},
then, f(x) is semistrictly semi-prequasi-invex function with respect to 7(x,y,0 on K.
Proof By contradiction, we assume there exist x,y€ K,A€ (0,1) such that, f(x)7 f(y) and
Syt+ap(x,y.20) =Zmax{ f(x), f(y)}. (1D
Let z=y+An(x,y,A). There are two cases to be considered.
1) We assume that f(x)<<f(y). And inequality (11) implies
f@O=f()>fx). (12)
Since f(x) is semi-prequasi-invex function, we obtain
F)<max{f(x), f(y}=F(y,

which, together with (12), leads to

[ =f(y)>f(x). (13)
Now. we assert that
SOtpplzy, ) =)=y, ¥V & (0,1). (14)
By the way of contradiction, we assume that 3 € (0,1), such that
Stz y, ) <<f(2). (15

Denote y=y+mm(z,y,p) s Bi=Q—2ap)/(1—2p).
Then, it follows that 0<f,<<1, and from Condition B1, B2, we obtain
ytRiplxsy.f=y+ B+ A1—B) In(x,y.fi+mA (1—H)) =
y LA+ A=) Iplxsyd +5 (1= =y+anp(x,y,2) =z,
implying
S =fy+pqplx,y.f))<max{f(x),f(y)}, (16)
since f(x) is semi-prequasi-invex. Then, combining (16) and (15) yields f(z)< f(x), which contradicts (13).
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Consequently, (14) holds.
Next, define a sequence {z,} by induction as follows:
2=yt —a)p(x,y.1—a),
2=yt 0=z y,1—a),

zi=y+ 1=z, 1sy,1—a), VE=2,kEN.
Then, under the condition that, there exists a € (0,1), such that for all x,y€ K with f(x)# f(y),
SO+A—a)p(x,y:1—a))<<max{f(x), (¥},
and the assumption f(x)<<f(y), we have
SeO=f G+ U= p(x,y,1—=a))<<f(y),
fGI)=fy+ U=z, y,1=a))<f(y),

fGO=fy+A—anp(z, 1y, 1—a))<<f(y), Vk=2,kEN. an
From Condition Bl, we get z;=y+ (1—a)'p(x,y,(1—a)"), VEEN. .
Since 0<<a<{1, then z,—>y as £k—>°°, Choose k, € N such that (1—a)* <{A, and denote = (1 —a)"1 /A,
then 0<{f<<1. Then, from Condition B1, we obtain
y Bz y =y +2By(x,y. AP =y + A=) 1 plx,y. (1—a)) =2z, ,
which, together with (17), yields
FFBpz.y. )= f(z, )f(y),
which contradicts (14).
2) We assume f(x)>f(y). Similarly, we have
SH<<flz)=f(x), (18
and
SGtup(x,z, )= f(2)=f(x), Y€ (0, 1D). (19
And then, define a sequence {z,} by induction as follows:
2=yt —a)p(x,y.1—a),
=z T U= yx,z;s1—a),

2=z, t (=) p(x,2, 1,1—a), VEA=2,kEN.
According to the condition that, there exists € (0,1) such that, for all x,y€ K with f(x)7# f(y),
S+ U—ap(xsy,1—a))<<max{f(x),f(y)},
and the assumption f(y)<<f(x), we have
fGO=fy+AO—ap(x,y, 1 —a))<f(x),
[z =fz+U—a)p(x,z1,1—a))<<f(x),

o= G+ A= p(xz, 1 1—a))<<f(x), ¥V k=2,kEN. (20)
From Condition B2, it is easy to verify that z,=y+ (1—a" ) p(x.y,1—a"), VkEN, . Since 0<Ca<l, then z, €
K for all k€N, Choose a £, € N such that 1—a*1 =2 and denote f=[(1—a" ) —2]/(1—2), then it is easy to
know that 0<{8<C1. Again from condition B,
2 Bp(x.z. =y +(A=PAFRp(x,y, (I=PA+PH=y+ =" )ylx,y,1—a"") =z, ,
which. together with (20), yields f(z+pp(x.z.8)) = f(z, )<"f(x), which contradicts (19). This completes
the proof.
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Remark 6 We delete the assumption f(y+ap(x,y,a))<<max{f(x),f(y)}, while it’s necessary in Theo-
rem 10. Moreover, the proof is simplified.
Theorem 12 Let f;(x), i=1,-,m, be semi-prequasi-invex with respect to y(x,y.0 on K, with y(x,y,0

satisfy Conditions B1, B2, and lifn Op(x,y,0 =0 for all x,y&€ K. And for each i=1,---,m, there exists a; € (0,
Oy 0

1) such that, for all x,y€ K with f,(x)Zf;(y),
fiy+U—ae)plxsy,1—a))<<max{f,(x), [ (y)}.
Then, any local efficient solution of (MP) is the global efficient solution of (MP).
Proof Assume on the contrary that, there exists y&€ K such that y is a local efficient solution of (MP),
but is not a global efficient solution of (MP). Then, there exists x& K such that
FQO<fi(y) 1<i<m, ¢20)
and for some j,
Fio<<f;(y), 1< j<im. (22)
From the semi-prequasi-invexity of f,(x),*, f,(x), and (21), we have
fiyFAp(x,y. ) <max{f;(x), fi(y=f(y,¥Yrc[0,1]. (23)
Then, from Theorem 11, we know that £, (x),+, f,.(x), is semistrictly semi-prequasi-invex functions.
And (22) implies that
£ an(x.y . 200 <max{f; (). f;(»}=f(y). YA€ (0. 1). (24)

The condition that lifn Ap(x,y,A) =0 together with (23) and (24), we get y is not a local efficient solution of
Av 0

(MP), which is a contradiction.
Theorem 13 Let f,(x),*+, f,,(x), be semistrictly semi-prequasi-invex function with respect to the same

vector-valued function 7, and lifn Ap(x,y,A)=0. Then, any local weakly efficient solution of (MP) is a global
Ay 0

weakly efficient solution of (MP).
Theorem 14 Let f;(x), i=1,++,m, be semi-prequasi-invex with respect to the vector-valued function

non K, with li}n Op(x,y,0) =0, and for some k, let f,(x) be strictly semi-prequasi-invex function with respect
Gy 0

to the same vector-valued function 5. Suppose that there exists A= (A, ,+* sA,) =0, with A,>0, kE {1, ,m},
such that y€ K is a local solution of min A" f(x), s. t. x€ K. Then, y is also a global efficient solution of
(MP).

Proof Assume on the contrary that, y&€ K is not a global efficient solution of (MP), i.e., there exists
some x€ K, f(x)7Z f(y), such that £, (x)<f. (y), 1<i<lm.

Then, for any 3€[0,1], from semi-prequasi-invexity of f;(x), we have

Fiy+By(xsy.Pr<max{f (x), fi(y}=f(y,
also from the strictly prequasi-invexity of f,(x), we obtain
FeCy+Bplx,y . ) <<max{f,(x), fL,(y)}=f.(y), YBE,D.
Hence, by A=, ,+**,A,,)=0, with A,>0, k€ {1,***,m}, we have

DALy BpCxay ) < DAL () 0<<B<1.
i=1 i=1

That is, A" f(y+py(x,y,A)<<A" f(y), 0<<B<1. Which is a contradiction.
Theorem 15 Let f;(x), i=1,+,m, be semistrictly semi-prequasi-invex with respect to the vector-valued
function 5 on K, and lifn Onp(x.y,0)=0. Suppose there exists A= (A, ,+*+,4,) =0, with 3,0, k€ {1,*+,m},
Oy 0

such that y€ K is a local solution of min A" f(x), s.t. x€ K. Then, y is also a global weakly efficient solution
of (MP).
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Remark 7

objective mathematical programming (P,).
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