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Abstract In this paper we consider the following nondifferentiable multiobjective programming problem ~ MP  min
f1x+sx‘C1 f2x+sx‘C2 S, «x +sx‘Cp s.t. h x <0 wheref, X>R i=12 pand h =
h, h, h, X—R" are continuously differentiable functions over X C; foreachie 1 2 p s a compact con-

vex set of R and s x ‘ C; denotes the support function of C; evaluated at x. Under the assumption of C « p d -con-

vexity the Kuhn-Tucher type sufficient optimality conditions for weakly efficient solutions of the nondifferentiable multiobjec-
tive programming problem are established. Moreover the Mond-Weir type dual model is formulated nad duality theorems are
obtained. Our results generalize some recent results in the literature.
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1 Introduction

Multiobjective programming has been extensivley studied over the past few decades due to it has many applica-
tions in such fields as the Internet finance biomedicine management science game theory and engineering. A
large number of results have appeared in the literature '

As is well-known convexity plays an important role in the design and analysis of successful algorithms for sol-
ving optimization problems. However the condition of convexity is too strong. Therefore several classes of gener-
alized convex functions have been introduced in the literature such as invexity ’ V p -invexity°  F p -con-
vexity > F-convexity °  p-convexity ° F o p d -convexity " . Recently Yuan ' introduced a class of
functions which called C o p d -convex function and which includes F « p d -convexity "  V-p-invexi-
ty ’ F p -convexity ° as special cases. Therefore it is important to research the optimization conditions and
duality results for multiobjective programming problems under conditions of € « p d -convexity.

12
In a recent paper

Mond and Schechter studied non-differentiable symmetric duality in which the objective
functions contain a support function. Based on the ideas of Mond and Schechter > Yang ® studied generalized
dual problems for a class of nondifferentiable multiobjective programs.

Inspired and motivated by "

in this paper we study a class of nondifferentiable multiobjective program-
ming problems in which each component of the objective function contains a term involving the support function of a
compact convex set. We obtain soms sufficient optimality conditions and duality results for weakly efficient solutions

of nondifferentiable multiobjective programming problems under the assumptions of C « p d -convexity.
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2  Preliminaries

Throughout this paper let R" be the n-dimensional Euclidean space and R", be nonnegative orthant of R". Let
X be an open subset of R". Assume thata X xX—R +\ 0 peRandd X xX—R, satisfiesd x x, =0cx =
%. Let C X x X X R"—R be a function satisfies C 0 =0forany x x, eXxAX

x xg
Definition 1 A function C X x X x R"—R is said to be convex on R" if for any fixed x x, X xX and for
any v, y, € R" one has
CXXO )\yl+ 1_/\ yZ g/\cxxo yl + 1_/\ Cxxo yZ VAE 01

Definition 2 ¥ A differentiable function h X—R is said to be € a p d - convex at x, € X if for any x e

th -h x,

d x x,
=>C whox, +p——

x xQ

o xx, o x X

The function h is said tobe C a p d -convexon X ifitis C o« p d -convex at every point in X. In parti-
cular h is said to be strongly C « p d -convex on X if p >0.

Remark 1 If the function C is sublinear with respect to the third argument. then the C a p d -convexity
is the same as the F o p d -convexity introduced by Liang © .

Remark 2 Every F «a p d -convex functionis C a p d -convex. However the converse is not true.

Example 1 Let X= «x %Sx$2fn p=-laxx, =1dxx, =/ x-x “andC x x, a =d’ «
—x, forany x x, eXxX. Leth x =cos” x. Obviously the function C is not sublinear with respect to the
third argument. Then hisnot F «a p d -convex at x, =%‘T. It is easy to prove that his C «a p d -convex at
-

We consider the following multiobjective programming problem
MP  min f, x +s x1C, f, x +s xlC, S, v +s xlC,
s.t. h x <0
where f; X—>R i=1 2 pand h= h, h, h, X—R" are continuously differentiable functions over X.
Suppose that C;, for ecahie 1 2 p is a compact convex set of R" and s x|C; denotes the support func-
tion of C; evaluated at x defined by s xIC; =max x w lweC, . Let S= xeX h x <0 be the set of all
feasible solutions and let / x = j h; x =0 for any x € X.

Letk, x =s xIC, i=12 p- Then £k, is a convex function and 9k, x = weC,| wx =s x|C,

where 9k, is the subdifferentiable of k, .
3 Optimality Conditions

In this section we obtain some sufficient optimality conditions for a weakly efficient solutions of MP under
the assumption of C « p d -convexity.

Theorem 1 Let x, € S be a feasible solution of MP . Assume that there exist A; >0 i=1 2 p and pu;
=0,=12 m  such that

P m
Z/\I- Wofioxy + ow; xy + zlu,j Whox =0 1
i=1 j=1
w, %y =5 x50 C. w, e C,i =12 p 2
z/’v‘h] % =0 3
j=1
If f; - + w;, - i =12 p is C a; p; d; -convex at x, h; - j =12 m is C B n;
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¢; -convex at x, and

¢ X X

ZALPIZ iiz ZMJTLIB X X, =0

then x, is a weakly efficient solution of MP .
Proof. Suppose that x, is not a weakly efficient solution of MP . Then
cx o +s axl € <fixyg +s a1 C, 1 =12 p

By 2 and w, x <s x|l C, fori =12 p one has

there existx x € S such that

fix + wx <fix +sxlC <fixg +sx1C, =f xg + w; x 5
Since f; -+ w,; - i=12 p is C «; p; d; -convex at x, 1. e.
fix + wox — fixg + w; x, d, x x,
: : : - =C.. ¥ fix + w x +p,——— 6
o X X 0 a; X X,

By the C B; m; ¢; -convexity of h; - j =12 m  one has

h, x —h;, x, ¢ X Xy
S =C,, Y¥hx ty— 7
B x % B x x
P m /\
Denote 7 = z A+ ZM/' It is easy to see that 7 > 0. Multiplying both side of 6 by - and of 7 by
ey ‘
# respectively and adding them and using the convexity of €, - we get
P A h. x —h «x
———fix + w,x — fix + w +2MTJ%2
=1 Ta; x % j=1 B x %
P A m )
i ! M y
2176'”0 Wof x, + w x, +2{7/C”0 Vohox, o+
i= j=
A doxoxg oM XX 1 <& "
B S Hp L———=C @ =+ AN + w, + oh, +
; 7Pi Q X x, “~ T 771 B] X X, x xQ T ; i f; X0 w; X ;M] j X
- A di v ox - M € X%
i S 2t G o
,-Z{ ZpLa,;xxO ; Zn’ﬁjxxo
This fact together with 1 and 4 yields
P /\_ h. x —h x
27 Px o wx = fixg WK +2MTJ—020 8
= Ta xox j=1 B x %
Since x, is a feasible solution of MF it follows from 3 that
h, x —h; x <0 9

M.
; TOB

Combining 5 and 9 yields

. A; "owihox - hox
i g /"Lj j j 0
E i x + w,x - J, % + w; x + E I
Ta x X, fl i ‘fl 0 i 0 T B] x %,

j=1

<0

=
which contradicts to 8 . Therefore x,is a weakly efficient solution of MP .

Corollary 1 Let x, € S be a feasible solution of MP . Assume that there exist A; >0 ¢ =1 2 p
andu, =0, =12 m  such that

P m

2/\il'l.'._f; X, + w; x, +2/J,j"l"hj x, =0

i=1 j

=1

w;, %y =38 x50 C, w, e C; i =12 p
ZMjh/ %, =0.
j=1
Iff- + w, - 1=12 p isstrongly C «; p; d; -convex atx, h; j=12 m is

strongly C B, m, ¢; -convex at x, then x, is a weakly efficient solution of MP .
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Proof. We can easily check that 4 holds under the assumptions of the corollary.
4 Duality Results
In this section we consider the following Mond-Weir type dual MD to the primal problem MP
max  fi u + w, u S, u + w, ou
I:l P " m .
E]}s.t. 2,-:1/\" Y ]: u o+ w;, u + 2,-:1'“/ Y hj u =0
m 10
E ijlﬂjhj u =0
E W= w, w, w, w,eC i=12 puelX
U w,=0j =12 mA= A A, A, e AT
where A= X eR, x>0
Theorem 2 Weak Duality Let x and w A w u be the feasible solutions of MP and MD
respectively. Assume thatf, - + w, - i=12 p is C a; p; d; -convex atu andh; - j=1
2 m is C B; m; ¢; -convex at u. If
! di x u G xuw 0 1
; P "o xou ZM’T”B xu
then the following cannot hold
fi v +s xl C fox +sxl €, < fiu + w ou fyu + w,ou 12

Proof. Letxand u A w u be the feasible solutions of MP and MD  respectively. 1

Zujhj r =0< Z}Mjhj u
j= j=

Since h; - j=12 m is C B, m, ¢; -convex at u one has

~ hyx —h u " ¢ xu
Zﬂjﬁjx—u’B Y€ Vhou +ZM,77,B T

t follows that

13

Now suppose contrary to the results that 12 holds. This together withs x| C;, = w, x =1 2

p gives that

cx o+ ow,x <f,x +sxlC, <fiu + w ou

By the C «; p; d; -convexity of f, - + w, - =12 p
X o+ ow,x - fiu o+ w,ou d, x u
: =C,, “fiu + w u +p, ———
o, x U ’ ) o XU

Denote 7 = Z)\ + Z,u, It follows from 10 — 11 13 — 15 and the convexity of C

i=1 =

P
woh x —h u
z _ A fix + wox-fiu + wou +Z7j—]2
T
= Ta; X u = B xu
/\l - /“"
T ' T
= C,, ¥ fiu + wu + Y FC,, Y¥hou o+
= j=
P m
A dixu Ko G x|
7 Pi + 77, =
= aQ X u = IBJ-xu

P
c.. % zAi‘m-'ﬁ u o+ w,u o+ zuj‘;-'hj u +
=

3 A dixu | T R

iz o x U
which gives a contradiction. This completes the proof.

Corollary 2 Weak Duality Let x and u A w u be the feasible solutions of MP

14

15

that

and MD
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respectively. Assume that f, - + w, - i =12 p is strongly C «, p; d;, -convex at u and

h, -

]

i

j=12 m is strongly C B; m; ¢; -convex at u. Then the following cannot hold

fi x +s x| C, L, x +s xl C, < fiu + w ou LU+ ow, u

Proof. We can easily check that 11 holds under the assumptions of the corollary.
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