分享
[1]徐善亮,吕佳.基尼指数结合K均值聚类的协同训练算法[J].重庆师范大学学报(自然科学版),2022,39(04):134.[doi:10.11721/cqnuj20220413]
 XU Shanliang,L? Jia.A Co-Training Algorithm Based on a Combination of Gini Index and K-means Clustering[J].期刊社,2022,39(04):134.[doi:10.11721/cqnuj20220413]
点击复制

基尼指数结合K均值聚类的协同训练算法

相似文献/References:

[1]刘建峰,吕佳. 非对称稀疏图的半监督学习研究 [J].重庆师范大学学报(自然科学版),2017,34(02):76.[doi:10.11721/cqnuj20170209]
 LIU Jianfeng,Lü Jia. Research on Semi-supervised Learning via Non-symmetric Sparse Graph [J].期刊社,2017,34(04):76.[doi:10.11721/cqnuj20170209]
[2]罗云松,吕佳.结合密度峰值优化模糊聚类的自训练方法[J].重庆师范大学学报(自然科学版),2019,36(02):94.[doi:10.11721/cqnuj20190211]
 LUO Yunsong,Lü Jia.Self-Training Algorithm Combined with Density Peak Optimization Fuzzy Clustering[J].期刊社,2019,36(04):94.[doi:10.11721/cqnuj20190211]
[3]龚旭,吕佳,皮家甜.结合信息增益率和K-means聚类的协同训练算法[J].重庆师范大学学报(自然科学版),2020,37(02):112.[doi:10.11721/cqnuj20200216]
 GONG Xu,L Jia,PI Jiatian.A Co-Training Algorithm Combined Information Gain Rate with K-means Clustering[J].期刊社,2020,37(04):112.[doi:10.11721/cqnuj20200216]
[4]鲜焱,吕佳.基于核均值漂移聚类的改进局部协同训练算法[J].重庆师范大学学报(自然科学版),2020,37(04):106.[doi:10.11721/cqnuj20200408]
 Improved Partial Co-Training Algorithm Based on Kernel Mean Shift.[J].期刊社,2020,37(04):106.[doi:10.11721/cqnuj20200408]
[5]龚旭,吕佳.基于加权主成分分析和改进密度峰值聚类的协同训练算法[J].重庆师范大学学报(自然科学版),2021,38(04):87.[doi:10.11721/cqnuj20210404]
 GONG Xu,L? Jia.A Co-Training Agorithm Based on WPCA and Improved Density Clustering[J].期刊社,2021,38(04):87.[doi:10.11721/cqnuj20210404]
[6]吕佳,李婷婷.半监督自训练方法综述[J].重庆师范大学学报(自然科学版),2021,38(05):98.[doi:10.11721/cqnuj20210406]
 Lü Jia,LI Tingting.A Summary of Semi-Supervised Self-Training Methods[J].期刊社,2021,38(04):98.[doi:10.11721/cqnuj20210406]
[7]李帅军,吕佳.结合合成实例与adaboostENN密度峰值自训练算法[J].重庆师范大学学报(自然科学版),2022,39(04):105.[doi:10.11721/cqnuj20220416]
 LI Shuaijun,L? Jia.Self-Training Algorithm Based on Density Peak Clustering Combining Synthetic Examples Generation with AdaboostENN[J].期刊社,2022,39(04):105.[doi:10.11721/cqnuj20220416]

更新日期/Last Update: 2022-07-25