摘要:研究了不变反凸模糊集及其相关性质,推广了有关文献中反凸模糊集的概念和相关结论。首先,通过将不变凸集的思想应用到反凸模糊集,定义了一种新的广义反凸模糊集——不变反凸模糊集:设A∈F(Rn),称A为不变反凸模糊集,若存在映射η:Rn×Rn→Rn,有A(y+αη(x,y))≤A(x)∨A(y),x,y∈Rn,α∈[0,1]。然后,探讨了反凸模糊集与不变反凸模糊集的关系:当η(x,y)=x-y时,不变反凸模糊集就退化为反凸模糊集,显然,反凸模糊集成为不变反凸模糊集的特例;通过构造例子说明不变反凸模糊集不是反凸模糊集,得到不变反凸模糊集是反凸模糊集的真推广的结论。根据不变反凸模糊集的定义,研究了不变反凸模糊集的并、稠密性等性质以及模糊集成为不变反凸模糊集的条件。最后,类似于不变反凸模糊集,分别探讨了模糊集成为不变强反凸模糊集和不变严格反凸模糊集的条件。